Chapter 6

Database Schema Design

Course Notes on Database Systems

By Prof. Rahul Simha

Complete notes available at:
https://www2.seas.gwu.edu/~simhaweb/dbase notes complete.pdf

351

Tim Wood
By Prof. Rahul Simha

Tim Wood
https://www2.seas.gwu.edu/~simhaweb/dbase_notes_complete.pdf

Tim Wood
Complete notes available at:

6.1 Database Schema Design: Introduction

e A Database Administrator (DBA) is responsible for designing the schema
of a relational database
= need to decide which attributes go into which relations.

e Other DBA responsibilities:

— Analysis of user needs.
— Performance.

— Security and access (for users as well as dbase programmers).
e We will focus on schema design.
e Schema design usually proceeds in two phases:

1. Use informal guidelines to create an initial design.

2. Use formal guidelines to improve initial design.
e Consider an airline employee dbase:

— Schema S1:

EMP (NAME, SSN, FLT_ID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN)

— Schema S2:

EMP (NAME, SSN, DEPTNO)

CREW (SSN, FLT_ID)

FLIGHT (FLTID, START_APT, END_APT)
DEPT (DEPTNO, DNAME, MGRSSN)

Which schema is better?

e Review of terminology:

352

— superkey — any group of attributes that can uniquely identify a
tuple in any instance.

e.g., for a particular instance (FNAME, LNAME) may appear to be
a key — but it can’t be guaranteed.
= (FNAME, LNAME) is a poor choice for a key.

— key — a minimal superkey, e.g.,
(NAME, SSN) is a superkey (but not a key)
(SSN) is a key (and also a superkey)

— primary key — one key designated for general use.

— foreign key — a set of attributes in relation R that is the primary
key for relation S.

— Domain constraint — proper typing of values.

— Key constraint 1 — no two tuples can have identical keys
If a tuple is found that violates the condition, then either

* the tuple should be rejected or,
* the key is not truly a key (i.e., a bad choice)
— Key constraint 2 — no primary key value can be null.

— Referential integrity constraint — can’t have a tuple whose for-
eign key values don’t exist in the foreign relation instance.

For example, consider

EMP1 (NAME, SSN, FLTID, START_APT, END_APT, DEPTNO)
DEPT (DEPTNO, DNAME, MGRSSN)

e.g. <John, B, Smith, ... , 9> and DEPTNO=9 does not exist at
present.

353

6.2 Informal Guidelines

1. Try to make user interpretation easy.

For example, compare

e Schema S1:

EMP (NAME, SSN, FLTID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN)

e Schema S2:
EMP (NAME, SSN, DEPTNO)
CREW (SSN, FLT.ID)
FLIGHT (FLT_ID, START_APT, END_APT)
DEPT (DEPTNO, DNAME, MGRSSN)

Perhaps S1 has too much information (to absorb) per tuple

2. Try to reduce redundancy.

Suppose there are only a few departments
= MGRSSN and DNAME are unnecessarily repeated too often in
EMP.

NAME ... | DEPTNO | DNAME | MGRSSN

Abel o | D Crew 111-22-3334
Aitken e | 3 Ticketing | 222-33-4445
Al Khwarizmi | ... | 5 Crew 111-22-3334
Archimedes 5 Crew 111-22-3334
Zeno e | 3 Ticketing | 222-33-4445
Zuse o | D Crew 111-22-3334

On the other hand, S2 repeats DEPTNO in DEPT
= DEPTNO (integer) is smaller than DNAME (string) and MGRSSN

(string)

354

3. Try to avoid update anomalies

Consider the schemas:

e Schema S1:

EMP (NAME, SSN, FLT_ID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN)

e Schema S2:

EMP (NAME, SSN, DEPTNO)

CREW (SSN, FLT_ID)

FLIGHT (FLT.ID, START_APT, END_APT)
DEPT (DEPTNO, DNAME, MGRSSN)

Both have same attibutes. Unfortunately, S1 can create problems called
update anomalies.

e Insertion anomalies

(a) Consider inserting “John Smith works in Dept. 57, i.e.,
<John, Smith, 123456789, ... , 5, <dname>, <mgrssn> >.

Every time a tuple of this sort is entered, we have to check that
DNAME is correct
= we have to scan the whole relation (worst-case)

(b) Consider creating a new department: DEPTNO=9, DNAME="Security’
(with no employees yet)
Only one way to insert this info
= create NULL values for employee info
= but that means a NULL primary key value (SSN)!

e Deletion anomalies
If we delete the last employee in the ‘Crew’ department, e.g.

<John, Smith, 123456789, ... , 5, ‘Crew’, ... >

then we will lose the information
“Department 5 is the Crew department”.

355

e Modification anomalies
Suppose we change the manager of department 5
= we have to change MGRSSN for all department 5 employees
= full scan of database

Thus, schema S1 has many problems. On the other hand:

e S1 — has 1 relation.

e S2 — has 4 relations.

e For many queries, we will need more joins using S2.

e SQL code with S2 will be more complicated because of the extra
joins
(One solution: use S2 but create views based on needed joins)

4. Try to avoid too many NULL values.

e This may occur in ‘fat’ relations (with too many attributes).
e Space is wasted.
e Problems occur when using aggregate functions like count or sum.
e NULLSs can have different intentions:
(a) The attribute does not apply.
(b) Value is unknown, and will remain unknown.

(c) Value is unknown at present.

5. Beware of the Spurious Tuple Problem.

Consider the following two schemas:

e Schema S1:
EMP (NAME, HOME_APT, SSN, FLT_ID)

e Schema S2:
EMPNEW (NAME, SSN, FLT_ID)
HOMEBASE (NAME, HOME_APT)

First, let us see how a relation in S1 can be converted to relations in S2,
e.g., consider this data:

356

EMP NAME HOME_APT §SSN FLT_ID
Smith National 111-22-3333 18
Smith JFK 222-33-4444 48
Jones La Guardia 333-44-5555 119

To create EMPNEW:
EMPNEW := lIxawmE, ssn, prrap (EMP)

Thus,

EMPNEW NAME SSN FLT ID
Smith 111-22-3333 18
Smith 222-33-4444 48
Jones 333-44-5555 119

Similarly, to create HOME_BASE:

HOMEBASE := llxamE, HOME APT (EMP)

In this case,

HOMEBASE NAME HOME_APT
Smith National
Smith JFK
Jones La Guardia

Now, suppose we are using S2 and we want to recreate S1 (say, as a
view):

EMP := EMPNEW x HOME_BASE.

We get the following join:

EMP NAME HOME_APT §SSN FLT_ID
Smith National 111-22-3333 18
Smith JFK 111-22-3333 18 *
Smith JFK 222-33-4444 48
Smith National 222-33-4444 48 *

Jones La Guardia 333-44-5555 119

357

Here, the *-tuples are spurious!

What happened? Since NAME is not a key, a careless join produced
wrong results.

Summary of problems:

e Insertion, deletion and modification anomalies.
e Too many NULLs.

e Spurious tuples.

= We need a theory of schema design
= functional dependencies and normalization

358

6.3 Functional Dependencies

e First, some convenient notions (and notation):

— Suppose our relational database has attributes Ay, ..., A,.
— Let R denote the schema R = (A, ..., A,).

— Typically, of course, we will have several relations,
e.g., EMP(Ay, A3, Ag), DEPT(Ay, A7, As) ... etc.

— However, we will pretend there is a relation with all the attributes,
i.e., with schema R = (Ay, As, ..., A,).

e Definition. A functional dependency (FD) between two sets of
attributes X and Y, denoted by X — Y, specifies a certain relationship
or connection between X and Y. Specifically, it says:
if ¢; and t9 are any two tuples in any instance of R such that

then

Intuitively, X — Y means: if you know the X-values of a tuple, then
that uniquely determines the Y -values.

Note: X and Y can be single attributes or groups of attributes.

e Example:
Consider the relational database schema:
EMP (NAME, SSN, FLT_ID, START_APT, END_APT)
Suppose
X = {SSN}
Y = {NAME}

359

Then X — Y, i.e., SSN uniquely determines NAME

From the definition, if we are given two tuples #; and 5, e.g.,
t, = <111-22-3333,....Smith,...>
ty = <111-22-3333,....Smith,...>

where

#[Y] = to[Y] (ie., t:[NAME] = t,[NAME]).

Thus, we can’t have two tuples with the same SSN and different
NAME’s.

Similarly, the functional dependency

{FLTID} — {START_APT, END_APT}

is a reasonable assumption or a reasonable constraint to declare.

Functional dependencies are specified to capture dependencies for all
instances.

[t may just happen that employee names (NAME) are all different for a
particular instance.

= we may be led to believe that {NAME} — {FLT_ID}.

But, later on, another ‘Smith’ might join the airline
= this would be a poor choice of a FD.

A FD s a property of the meaning of attributes

= it should hold for all possible instances.

360

e FD’s for specific relations.

Although we have defined FD’s on the universe of attributes, we will
often discuss FD’s within particular relations.

For example, the database schema might be:

(NAME, SSN, FLTID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN).

We might have the relation

FLIGHT (FLT.ID, START_APT, END_APT)

Here, we can identify the FD

{FLT_ID} — {START_APT, END_APT}

in FLIGHT.

e Sometimes a diagram is used to show FD’s, e.g.,

NAME, SSN, FLT_ID, START_APT, END_APT

| | A ‘ T T

Here the FD’s shown are:

{SSN} — {NAME, FLTID}
{FLTID} — {START_APT, END_APT}

e Summary:

— A FD is defined between sets of attributes.

— The FD X — Y says “The X-attributes completely determine the
Y-attributes”.

361

6.4 Sets of Functional Dependencies

e Consider the following example:

EMP (NAME, SSN, FLT_ID, START_APT, END_APT)

NAME, SSN, FLT_ID, START_APT, END_APT

| I ‘ T T

The obvious FD’s are:

{SSN} — {FLTID}
{FLTID} — {START_APT,END_APT}

Let I denote the above collection of FD’s.

From F', we can infer
{SSN} — {START_APT, END_APT}.

Why? Because, SSN uniquely determines FLT_ID and FLT_ID uniquely
determines {START_APT, END_APT}.

Also, the following FD’s are examples of trivial FD’s inferred from F'.

{SSNY} 5 {SSN}
{SSN, NAME} — {NAME}

e Definition. Suppose F is a set of FD’s. Then, F'*, the closure of F

is the set of FD’s that includes F' and all the FD’s that can be inferred
from F.

362

6.5 Inference Rules for FD Sets

e NOTE the following:
1. When we say X — Y, X and Y are subsets of the universe of
attributes.

2. For convenience, we will sometimes drop the set notation and com-
mas within sets.
Suppose F' is the set of FD’s:

X—>Y
X = Z.

Then, from F we can infer:
X -=>YZ.

Here, Y Z denotes the union of Y and Z.

For example, F' is

X = {SSN} — {NAME

} =Y
X ={SSN} — {FLTID}=Z

From which we conclude
X = {SSN} — {NAME, FLTID} = YU Z =Y Z

e From above, we can devise a rule: if X — Y and X — Z,then X — Y Z.

Such a rule is called an inference rule.

363

e Standard inference rules for FD’s:

1. Reflexive rule. If Y C X then X — Y.
e.g. {SSN, NAME} — {NAME}

2. Augmentation rule. If X — Y then XZ — Y Z for any group of
attributes Z.
e.g.

{SSN}

{NAME}
{START_APT}

N < A
1

Then, {SSN} — {NAME} implies
{SSN, START_APT} — {NAME, START_APT}

3. Transitive rule. If X —Y andY — Z then X — Z.
e.g., the FD’s

{SSN} — {FLTID}
{FLTID} — {END_APT}

together imply
{SSN} — {END_APTY}.

4. Decomposition rule. If X — Y Z then X — Y.

e.g. the FD
{SSN} — {NAME, FLT ID}

implies
{SSN} — {NAME}.

364

5. Union rule. If X - Y and X — Z then X - Y Z.
e.g. the FD’s

{SSN} — {NAME}
{SSN} — {FLT.ID}

imply
{SSN} — {NAME, FLT_ID}.

6. Pseudotransitive rule. If X =Y and WY — Z then WX — Z.

e.g. consider the relation

OVERTIME (NAME, SSN, RANK, FLT_ID, START_APT, END_APT, BONUS)

The FD’s

{FLTID} — {START_APT, END_APT}
{RANK, START_APT, END_APT} — {BONUS}

imply
{RANK, FLT_ID} — {BONUS.

e One can use Rules 1-6 to determine F'*.

e It turns out that Rules 1-3 are sufficient to completely determine F'*.
Rules 1-3 are called Armstrong’s Rules in honor of the person who

proved this result.

o Fquivalent FD sets.

— For most FD-sets F', the closure F'" is probably quite large.

— While we are interested in the theoretical implications of F'* for any
F, we are rarely going to compute F'*.
= Working with F' turns out to be good enough.

— Definition. FD-sets F and F are equivalent if E* = F7, ie., if
their closures are equal.

— If F is a set of FD’s smaller than F and yet £ = F7, then it is
easier to work with £.

— If B = F* we also say that F covers F or is a cover for F.

365

6.6 Attribute Set Closures

e If X is an attribute set, we are often interested in all attributes (func-
tionally) determined by X.
i.e., what is the largest Y for which X — Y7

For example, consider

EMP (NAME, SSN, FLT_ID, START_APT, END_APT)

NAME, SSN, FLT_ID, START_APT, END_APT

| | M‘T _________________ T A

Here, SSN determines all the other attributes.
= {SSN}* = {NAME,SSN,FLT ID,START _APT,END_APT}

e Definition. If F' is a set of FD’s and X is a set of attributes, then

X1 is the closure of X under F if X is the largest set of attributes
functionally determined by X using inference rules on FD’s in F.

e Algorithm for determining X .

366

Algorithm: ATTRIBUTE-SET-CLOSURE (X, F)

Input: Attribute set X, FD set F.
Output: Closure of X, X*.

1. Xt .= X;

2. repeat

3 old Xt = X

4. for each FD Y — Z in F do
5. if Y C X' then

6 Xt = XtUZ;

7. until old Xt = XT;

8. return X

For example, suppose F' is:

{SSN} — {NAME}
{FLTID} — {START_APT, END_APT}
{SSN} — {FLTID}

and suppose we want the closure of X={SSN, NAME} under F.

— Initially, X* := {SSN, NAME}.
— In the first iteration of the outerloop, in line 3 old X = {SSN,
NAME}.

— Then, the FD {FLT_ID} — {START_ID, END_APT} is processed
in the for-loop.
= since {FLT_ID} is not in X7, it is ignored.

— Then, the FD {SSN} — {FLT_ID} is processed
= it results in X* = {SSN, NAME, FLT_ID}.

— After the first iteration of the repeat-loop, X*={SSN, NAME,

FLT_ID} and old_X+:{SSN, NAME}
= must continue.

367

— In the second iteration, the FD {FLT_ID} — {START_ID, END_APT}
is processed in the for-loop.
= it results in Xt = {SSN, NAME, FLT_ID, START APT,

END_APT}.

— After the second iteration of the repeat-loop, X*={SSN, NAME,
FLT ID, START_APT, END_APT} and old X*={SSN, NAME,

FLT_ID}
= must continue.

— No changes in third iteration
= stop.

Finally, X* = {SSN, NAME, FLT_ID, START_APT, END_APT}.

368

6.7

Normal Forms

Normal forms are properties of relations.

There are many normal forms: First Normal Form (1NF), Second Nor-
mal Form (2NF), Third Normal Form (3NF), Boyce-Codd Normal Form
(BCNF), etc.

We say a relation is in zNF if its attributes satisfy certain properties
(via their FD’s).

Generally, these properties are desirable.
For example, if we desire the 3NF for a relational database:

— We will test the relations in the database to see which are in 3NF.

— Those that are not in 3NF will be decomposed into smaller rela-
tions (smaller in numbers of attributes) until we have each relation
satisfying the 3NF properties.

In the real world, most people try to achieve at least 3NF.

It is slightly better to achieve BCNF (Boyce-Codd Normal Form), but
3NF is considered ‘not bad’.

The end result is: if a database is in BCNF (or 3NF), many anomalies
are avoided.

FD’s were designed to test for Normal Forms.

It is easier to understand normal forms by first considering a simpler
version — normal forms for primary keys.

Recall some definitions and notation:

369

— A prime attribute — an attribute belonging to some candidate key
(not necessarily the primary key).

— A nonprime attribute — not belonging to any candidate key.

370

6.8 INF: First Normal Form

e Definition. A relation is in INF if:

1. the value of any attribute in any tuple is a single value, and

2. domains of attributes contain only atomic values.

e Example of relations not satisfying 1NF:

multiple—valued attribute

PASSENGER NAME SSN FLT_ID MILES
Smith 111-22-3333 17 {/ 40000
Jones 222-33-4444 {12,53,119} 64000
Brown 333-44-5555 27 575

= Does not satisfy first part of definition.

Nested structure

PASSENGER NAME SSN FLT_ID START-APT

Smith 111-22-3333 17/ National

Jones 222-33-4444 12 TJFK
: 53 JFK .
i119 National :

Brown 333-44-5555 27 Logan

= Does not satisfy second part of definition (contains nested relations).

371

e [t is easy to transform the above relations to satisfy 1NF by:

1. adding tuples or

2. creating new relations

For the first example:

PASSENGER NAME SSN FLT_ID MILES
Smith 111-22-3333 17 40000
Jones 222-33-4444 12 64000
Jones 222-33-4444 53 64000
Jones 222-33-4444 119 64000
Brown 333-44-5555 27 575
Added tuples
For the second example:
PASSENGER NAME SSN FLT_ID FLIGHT FLT ID START-APT
Smith 111-22-3333 17 17 National
Jones 222-33-4444 12 12 JFK
Jones 222-33-4444 53 53 JFK
Jones 222-33-4444 119 119 National
Brown 333-44-5555 27 27 Logan

e INF is nowadays taken for granted (i.e., later formulations of relational

theory assume relations to be in 1NF).

= we will assume all relations are in 1NF.

e Sometimes, raw data not in INF is called unnormalized data.

372

6.9 2NF: Second Normal Form

e Definition. A FD X — Y is a partial dependency if there exists an
attribute A € X such that

X—-—A =Y.

We say that Y is partially dependent on X.

Example: consider the following relation with primary key {SSN,
FLT ID}

OVERTIME (NAME, SSN, FLT_ID, BONUS)

and suppose that bonuses are based on flight duration, and on the crew
member’s rank and salary.

Here we can identify some FD’s such as

{SSN, FLTID} — {BONUS}
{SSN} — {NAME}

Now, neither one of

{SSN} - {BONUS}
(FLTIID} — {BONUS}

1s true.

Thus, {SSN, FLT_ID} — {BONUS} is not a partial dependency.

But, {SSN} — {NAME}
= NAME is partially dependent on the primary key {SSN,FLT ID}
= {SSN, FLT_ID} — {NAME} is a partial dependency.

e Definition. A relation schema is in 2NF if no nonprime attribute is
partially dependent on the primary key
(in other words, depends on part of the primary key).

373

e Thus, in the above example, OVERTIME is not in 2NF.
(It is, however, in 1NF).

e Why is this a problem?
Suppose an instance looks like:

OVERTIME NAME SSN FLT.ID BONUS)
Smith 111-22-3333 17 450
Jones 222-33-4444 28 375

Suppose we want to insert the tuple

<Brown, 111-22-3333, 18, 950>.

Because we have the FD: {SSN} — {NAME} we will have to check that

<Brown, 111-22-3333,...>

is valid, i.e., that it matches other SSN,NAME values for SSN=111-22-
3333

= we have to scan the whole relation (worst-case) to check

= insertion anomaly.

Note that
<Brown, 111-22-3333,...>

is not valid.

Similarly, if Flight # 28 is deleted
= we will lose the information “222-33-4444 is the SSN of Jones”
= deletion anomaly.

This relation also has a modification anomaly:
= if Smith changes name to Brown
= have to propagate change to all relevant tuples.

374

To solve the problem, consider the decomposition of

OVERTIME (NAME, SSN, FLT_ID, BONUS)
into

OVERTIME (SSN, FLT_ID, BONUS)
PERSONAL_INFO (SSN, NAME)

These relations are in 2NF, with the important FD’s:

{SSN, FLTID} — {BONUS}
{SSN} — {NAME}

There are no partial dependencies of nonprime attributes on primary

keys
= the new set of relations is in 2NF.

375

6.10 3NF: Third Normal Form

e Definition. The FD X — Y is a transitive dependency in relation
R if there exists a set of attributes Z in R such that

1. X —>Zand Z —-Y
2. Z is not a subset of any key of R

Example: consider the relation
EMP (NAME, SSN, POSITION, DEPTNO, DNAME, MGRSSN).

— Observe that EMP is in 2NF since no partial dependencies exist at
all (and hence partial dependencies on the primary key don’t exist).

— Next, consider these FD’s (there are others):

{SSN} — {DEPTNO}
{DEPTNO} — {MGRSSN}

Note that DEPTNO is not part of any key.
= there is a transitive dependency of MGRSSN on SSN.

e Definition. A relation R is in 3NF if

1. it is in 2NF and,

2. no nonprime attribute is transitively dependent on the primary key.

In the above example:

— EMP is in 2NF

— MGRSSN is a nonprime attribute transitively dependent on the pri-
mary key SSN.

= EMP is not in 3NF.

376

e Why should we care about 3NF?
Consider the following instance of EMP:
EMP NAME SSN POSITION DEPTNO DNAME MGRSSN

Smith .. 5 Crew 111-22-3333
Jones .. 6 Ticketing 222-33-4444

Suppose we insert the tuple <Brown,...,5, Security, 333-44-5555>

= we would have to check that the DEPTNO matches the MGRSSN
(wrong in this case)

= scanning the database

= insertion anomaly.

Similarly, if Smith’s DEPTNO changes to 6
= we will have to also insert the correct MGRSSN in Smith’s tuple
= modification anomaly.

A deletion anomaly also occurs, if we delete Smith’s tuple and Smith is
the last Crew employee

= we will lose the information “Dept# 6 is Crew”

= deletion anomaly.

e To solve a 3NF problem, we can decompose relations.

In the above example:

E1 (NAME, SSN, POSITION, DEPTNO)
E2 (DEPTNO, DNAME, MGRSSN)

Note:

1. E1 and E2 are in 3NF.
2. EMP can be recovered by joining E1 and E2.

3. The join will not create spurious tuples.

377

6.11 General Definitions of 2NF and 3NF

e We have defined 2NF and 3NF using primary keys.
e General definitions based on any candidate key are desirable.

o 2NF:

— Primary key wversion: A relation schema R is in 2NF if every
nonprime attribute A in R is not partially dependent on the
primary key.

— General version: A relation schema R is in 2NF if every nonprime
attribute A in R is not partially dependent on any key of R.

Consider the following example:

AIRCRAFT_PARTS (MANUF, CODE, PART ID, DESCR, URL, PRICE).

Here,

— The airline keeps information about aircraft parts.

— PART_ID is the primary key
= it is a a unique number assigned by the airline to each part.

— Each part is manufactured by a single manufacturer (MANUF) and
the manufacturer uses a code (CODE) to identify the part
= the combination {MANUF, CODE} is a key.

— The URL is the (internet) address of the manufacturer’s webpage.

Now, each manufacturer has a web page
= we have the FD {MANUF} — {URL}
= a dependency from part of a key to something else.

Then, AIRCRAFT_PARTS is in 2NF according to the primary version
of the definition (no partial dependency on the primary key).

378

But the partial dependency on MANUF causes the general definition to
fail
= AIRCRAFT_PARTS is not in 2NF.
e We want the general definition to hold, because otherwise we will have
to check the FD {MANUF} — {URL} for every insertion.

We can decompose

AIRCRAFT_PARTS (MANUF, CODE, PART_ID, DESCR, URL, PRICE).
into

PARTS (MANUF, CODE, PART.ID, DESCR, PRICE)
WEBSITES (MANUF, URL)

This schema is in 2NF'.

e Thus we see how our elaborate definitions of normal forms helps us catch
problems in seemingly innocuous schemas (like AIRCRAFT_PARTS).

o 3NI:

— Primary key version: A relation R is in 3NF if
1. it is in 2NF, and

2. no nonprime attribute is transitively dependent on the primary key
of R.

— General version: A relation R is in 3NF if
1. it is in 2NF, and

2. no nonprime attribute is transitively dependent on any key of R.

Now observe this:

- If X C {4,...,A,} is any key then X — Y for any ¥ C
{Ay,..., Ay}
— Suppose for some relation R

1. X is the primary key.

379

2. Y is some other key.
3. Z is transitively dependent on Y, i.e., there are FD’s

Y —-Wand W — Z.

But X — W since X is a key.
= Z is transitively dependent on X (the primary key)
= the two 3NF' definitions are identical.

For example, consider

AIRCRAFT_PARTS (MANUF, CODE, PART ID, EMAIL, URL, PRICE).

Then, the FD {EMAIL} — {URL} may be a reasonable choice

= there is a transitive dependency PART_ID — {EMAIL} — {URL}.
But, since {MANUF, CODE} is a key

= {MANUF, CODE} — {PART.ID} trivially

= {MANUF, CODE} — {EMAIL} — {URL}

= transitive dependency on a nonprimary key.

380

6.12 BCNF: Boyce-Codd Normal Form

e Consider the relation
PARTS (MANUF, CODE, URL).

Suppose that each manufacturer has a webpage form that depends on
the part being ordered
= a different URL for each part.

We can identify the natural FD:
{MANUF, CODE} — {URL}.

Note that we also have the FD:
{URL} — {MANUF}

since a given URL can only correspond to a unique manufacturer.
Is PARTS in 2NF?

— Recall: no nonprime attribute should have a partial dependence on
a key.

— Here, a manufacturer has different URL’s
= no dependence of URL on MANUF.
= it passes the 2NF test
Is PARTS in 3NF?

— It is in 2NF.
— Recall: we should not have any transitive dependence on a key.

— Now, {MANUF, CODE} is the only key
= URL is the only attribute left
= can’t have a transitive dependency with only one nonprime at-
tribute.

= PARTS is in 3NF.

381

e So, what is the problem?

Unfortunately, PARTS (MANUF, CODE, URL) has all the anomalies
(insertion, deletion and modification).

— The FD {URL} — {MANUF} is the real problem.

— Suppose, we delete the tuple
<Boeing, 3395, http://www.boeing.com/parts/737/wing>.

If this is the only Boeing tuple in the relation, we will lose Boeing’s
URL
= deletion anomaly.

It is easy to check that insertion and modification anomalies are also
present.

e The problem appears to be:

— In 2NF: we did not allow FD’s from parts of keys to nonprime
attributes.

— Here we have an FD from an attribute to part of a key.

e One option is to introduce the following rule for every relation:

1. it should be in 3NF
2. there should be no FD X — Y such that Y is part of a key.

Unfortunately, this rule is too restrictive.
e.g., consider

AIRCRAFT_PARTS (MANUF, CODE, PART ID, DESCR, PRICE).

Here,

— PART_ID is the primary key.
— {MANUF, CODE} is another key.
— The FD {PART ID} — {MANUF} follows.

382

Thus, if we disallow relations of this sort, we will be essentially barring
all non-primary keys from having multiple attributes.
= may be too restrictive in practice.

e Let us try to soften the rule:

1. it should be in 3NF
2. for every FD X — Y, such that Y is part of a key, X should itself
be a key.
That is, we do allow part of keys to be dependent on things — provided
those things are keys.

This is a reasonable assumption because:
— If X is a key, we would likely have to check uniqueness anyway (and
that’s all we have to do — using the unique keyword in SQL).

— Deletion causes less of an anomaly, e.g., in
AIRCRAFT_PARTS (MANUF, CODE, PART ID, DESCR, PRICE).

the FD {PART_ID} — {MANUF} is not important.
Deleting the only tuple with ‘Boeing’, e.g.,
<Boeing, 423, 12, Coat-rack, $50>,

we lose the information “Part_id 12 is made by Boeing”.

But, if we delete the tuple
<Boeing, 423, Coat-rack, $50>

we are really saying “Boeing is the only company who makes the
coat-racks we use, and we don’t need coat-racks”
= it’s OK to lose “Part_id 12 is made by Boeing”.

e The softened rule above needs a small modification:

Observe that in the above example, we have the FD

{PARTID} — {MANUF}.

383

This passes our new test.

However, the following is also an FD:

{PART_ID, PRICE} — {MANUF}.

This fails the test because {PART_ID,PRICE} is not a key.

However, it is a superkey (contains a key).

e Final form:

Definition. A relation R is in Boyce-Codd Normal Form (BCNF) if:

1. it is in 3NF
2. for every FD X — Y such that Y is part of a key, X is a superkey.

384

6.13 3NF and BCNF: An Alternate Definition

o First recall the 3NF definition:
1. 2NF

2. no transitive dependency from a key to a nonprime attribute should
exist.

Here, a transitive dependency means:

—X—=YandY =+ 7
— Y is not part of any key
— X is a key

— Z is a nonprime attribute

Now, since X is a key, the FD X — Y must be true for any Y.
Thus, the condition is really saying (given X is a key) that for Y — Z:

— (a) Y is not part of any key
— (b) Z is a nonprime attribute
Next, recall that 2NF is essentially:
— if Y — Z then Y cannot be a proper subset of a key.

Combine this with the first item (a) in 3NF and write (b) separately:
A relation R is in 3NF if for every FD Y — Z either

1. Y is a superkey, or

2. Z is a prime attribute.

e This is an alternate definition of 3NF which does not mention 2NF.

385

e Note that if Z is a prime attribute, we allow ¥ — Z even if Y is not a
superkey, e.g. in

PART (MANUF, CODE, URL)

we allowed {URL} — {MANUF} because {MANUF} is a prime at-
tribute (it is part of the key {MANUF, CODE}).
But BCNF does not allow this.

Hence, an alternate definition of BCNF is:
A relation R is in BCNF if for every FD Y — Z, Y is a superkey of R.

— This definition does not use 3NF.
e NOTE:

— We must be careful to rule out trivial dependencies from considera-
tion:

*« The dependency X — A where attribute A € X is called a
trivial dependency.

* Example: {SSN, NAME} — {SSN}.

x We rule out trivial dependencies because they occur with any
subset of attributes.

— Suppose Y = {A;, ..., A;} is a subset of attributes and X — Y.
*x We know that X — A; for i =1, ..., k by the decomposition rule.

« Thus, the BCNF definition can also be stated as: a relation s in
BCNF if every nontrivial dependency is one in which a superkey
determines an attribute.

386

— Informally, the only functional dependencies in a BCNF go from
keys to other attributes.

— Example:
* Suppose X is a superkey and X — A in a BCNF relation, R.
x Suppose B is some other attribute.

* Consider the following tuples:

R X A B
z a b
zr a 7

* The value X = z determines the value A = a.
* But could we have different B-values?

x Different B-values raise the familiar problem of X — A anoma-
lies.

* But since R € BOCNF, X is a superkey and so X — B (simply
by being a superkey).
x Thus, the B-value must be b.

x Since we can’t have duplicate tuples, it won’t be allowed.

e Finally, observe that

Risin BONF = Risin 3NF
= Risin 2NF
= Risin INF

387

6.14 Another View of Normal Forms

e If the discussion so far has been confusing, let us try to explain normal
forms a little differently.

e First, some simplifications:

— Let us only consider relations with a single key — a primary key.

— Assume this key has several attributes.

Note: this simplification is only for conveying the key idea behind normal
forms. In practice you would have to use the full definition.

o Let R(Ay,...,Ag) be a relation with primary key {A;, Ay, As}.

e 2NF says: FD’s like A5 — Aj are not allowed.
= a proper subset of a key should not be on the left side of an FD:

R (A1, A2, A3, A4, A5, A6)

e 3NF says:

1. at least 2NF, and

2. FD’s like A4 — Ag are not allowed.
= an FD between non-key attributes is not allowed:

R (A1, A2, A3, A4, A5, Af)

388

e Next, BCNF:

Unfortunately SNF allows an FD like A5 — A3, where Aj is nonprime
and Ajs is part of the key:

R (A1, A2, ?3, A4, A5, A6)

We saw why this was a problem in the BCNF example.

On the other hand we did not want to be too restrictive: if A; happened
to be a key we would allow it:

R (A1, A2, A3, A4, A5, A6)

e The key ideas above are generalized to allow for:

— multiple keys in a relation

— keys consisting of groups of attributes.

389

6.15 Decomposition and its Problems

e We have seen that it is desirable to have relations in BCNF (or at least
3NF).

e We have seen how to test for BCNF and 3NF.
e But how do we create a BCNF (or 3NF) database?

— One approach: Ad-hoc

« Create relations intuitively
« Test each for BCNF

— More formal approach:

* Start with a single large relation with all attributes
x Systematically decompose relations not in BCNF

*x Repeat until all relations are in BCNF
e Unfortunately, decomposition can create problems:

— Dependencies may be lost after decomposition.
— Joins of decomposed relations may create spurious tuples.

— Joins of decomposed relations may lose tuples.

e Note: thus far, we have identified problems with individual relations
= we have not placed constraints among multiple relations.

390

6.16 Dependency Preservation

e Suppose we decompose R = (A1, ..., Ay) into relations Ry, ..., Ry,.

e Of course, we should have attribute preservation, i.e., attributes
should not be lost in the shuffle:

RiUR,U...R, =R

e Unfortunately, FD’s can be lost, e.g.,

— Suppose F'is a set of FD’s containing the dependency
{PART_ID} — {PRICE}.

— Suppose also that {PART_ID} is put in relation Rs and {PRICE}

is put in relation Ry
= we can’t check the dependency.

e In the above example, the lost FD would be OK, if the dependency were
somehow not important
= we need to consider the closure of FD’s.

e Definition. Let F' be a set of FD’s and suppose R is decomposed into
relations Ry, ..., R,,. Let E be the set of FD’s in Ry,..., R,,. Then the
decomposition is dependency preserving if E* = F*.

e Fact: It is always possible to decompose any relation R into 3NF rela-
tions Ry,..., R, such that the decomposition is dependency preserving.

391

6.17 Nonadditive and Lossless Decompositions

e Suppose we decompose R into Rq,..., R,,. Later, we wish to recover R
(perhaps as a view).

— The natural join on Ry, ..., R,, should return R.

— If we’re not careful, this join can create spurious tuples
e.g, consider the relation r with schema R =(CAR,OWNER,COLOR):
CAR OWNER COLOR

Toyota Smith blue
Ford Jones blue

Suppose we decompose this into 1 and r9 with schemas R;=(CAR,COLOR)
and Ry=(OWNER,COLOR).

How? Let i = Igar,coror(r) and r» = IlowNer,corLor(r):

CAR COLOR OWNER COLOR
Toyota blue Smith blue
Ford blue Jones blue

What happens when we join r; and ro7

CAR OWNER COLOR
Toyota Smith blue
Toyota Jones blue *
Ford Smith blue *
Ford Jones blue

= Spurious tuples!

e A decomposition of R into Ry,..., R,, is nonadditive if for every in-
stance r of R, the natural join of the corresponding instances rq,...,r,
is equal to r, i.e.,

rikroXx ...y =T

392

where r; = Ilg,(r).
Note: nonadditive is the same as ‘creates no spurious tuples’.
Sometimes, one can inadvertently lose tuples in a join.

Example:

Suppose EMP (SSN, NAME, FLT_ID, DEPTNO) has too many NULLs
in the DEPTNO attribute (because many employees have no assigned

department).
EMP SSN NAME FLT.ID DEPTNO
111-22-3333 Smith 12 NULL
222-33-4444 Jones 55 6
333-44-5555 Brown 119 NULL

= One solution is to decompose EMP into two relations:

EMP1 (SSN, NAME, FLT_ID)
DEPT (SSN, DEPTNO)

e.g.,
EMP1 SSN NAME FLT.ID DEPT SSN DEPTNO
111-22-3333 Smith 12 999.33-4444 G
222-33-4444 Jones 55
333-44-5555 Brown 119
Here,

— Only those employees assigned to a department will have department
numbers

= DEPT is small.
— Both EMP1 and DEPT are in BCNF.

— The decomposition is nonadditive and dependency preserving.

Consider the join EMP1 « DEPT:

393

EMP1 « DEPT SSN NAME FLTID DEPTNO
222-33-4444 Jones 55 6

= the ‘Smith’ and ‘Brown’ tuples are lost!
= we have to be careful in letting joins replace relations.

e We call a decomposition is lossless if it does not lose tuples in recovering
the original relation.

e Note:

— Nonadditivity and losslessness are two sides of the same coin.
— We will use the term lossless to refer to both.
— Some books use additive to refer to both.

e It would be useful, if given a decomposition, to test whether the decom-
position is lossless.

e A useful fact. A decomposition of R into R; and Ry is nonadditive
with respect to a set of FD’s F, if and only if either one of the FD’s

— leRQ —>R1—R2
- RiNRy — Ry — Ry
is in F'T.
Intuition:

— Observe: the attributes R; N Ry are in both R; and Rs
= these are the join attributes.

— Suppose the FD Ri N Ry — R; — Ry holds.
This is the same as Ry N Ry — Ry — (R1 N Ry)
= R1N Ry is a key for R;.
= weird, unwanted tuple combinations can’t occur.

e In the R=(CAR,OWNER,COLOR) example:

394

We joined

CAR COLOR OWNER COLOR
Toyota blue Smith blue
Ford blue Jones blue

to get

CAR OWNER COLOR
Toyota Smith blue
Toyota Jones blue *
Ford Smith blue *
Ford Jones blue

Note that {COLOR} is not a key for either relation.
Here, Ri=(CAR,COLOR) and Ry—=(OWNER,COLOR) and,

R1 N R2 — COLOR
R1 - R2 — CAR
R2 - R1 — OWNER

Clearly, the neither of FD’s

{COLOR} — {CAR}
{COLOR} — {OWNER}

hold
= the decomposition is not nonadditive.

395

6.18 Algorithms for Decomposition of
Relations

e First, recall that an FD set E covers FD set F if ET = F* ie., the
closure of F' is the closure of F’
= if F is smaller it will be easier to work with
= 1t is useful to determine the minimal cover for an FD set F.

e Minimal covers can be defined in a number of ways:
— F is an FD-mainimal cover of F' if E covers F' and no other FD set

covers F' that has fewer FD’s than F.

— F is an attribute-mainimal cover of F if E covers F' and no other FD
set covers F with fewer attributes.

— FE is a left-minimal cover of F' if E/ covers F' and no other FD set
covers F' with smaller left-hand-sides.

Note:

— Computing an attribute-minimal cover is a hard (NP-complete)
problem
= no fast algorithm is known.

— Computing FD-minimal covers and left-minimal covers is fairly
straightforward.

— Left-minimal covers are all that’s needed for 3NF decompositions.
e Key ideas in finding a left-minimal cover:

— Consider the relation
EMP (NAME, SSN, FLT_ID, START_APT, END_APT).

and the FD set F'

396

(1) {SSN, NAME} — {FLT.D, START_APT}
(2) {SSN} — {FLTID}

(3) {FLTID} — {START_APT}

(4) {SSN} — {NAME}

(5) {SSN, NAME} — {FLT.D}

Note that, given (2) and (4), we don’t need (5) since the combination
of (2) and (4) will imply (5).

— The first step is to break up the FD’s so that the right-hand-sides
are only single attributes:

{SSN, NAME} — {FLT_ID}
{SSN, NAME} — {START_APT}
{SSN} — {FLTID}
{FLT_ID} — {START_APT}
{SSN} — {NAME}

— Next, see if left-hand-side attributes can be removed.
* For example, consider the FD {SSN, NAME} — {FLT_ID}.
* The left-hand-side here is {SSN, NAME}.
* Suppose we remove SSN: {SSN, NAME} - {SSN}.
* Can we replace the earlier FD with {NAME} — {FLT_ID}?

x To check, we compute the attribute closure of the new left-hand-
side, i.e., check whether ({SSN, NAME} - {SSN})* contains the

right-hand-side { FLT_ID}.
« In this case, {NAME}" does not contain {FLT ID}
= cannot remove {SSN} from {SSN, NAME} — {FLT_ID}.

e Definition: An FD X — Y where Y has more than one attribute is
called a multiple-RHS FD.

e Algorithm for computing a minimal cover:

397

Algorithm: LErFT-MIN-COVER (F)

Input: An FD set F'.

Output: A left-minimal cover E.
1. FE = F,

2. for each multiple-RHS FD X — A A5... Ay in E

3 E = F— {X — A1A2...Ak};

4. for : < 1 to k

5 E = FU{X — A;};

6. endfor

// All multiple-RHS FD’s have been replaced by single-RHS FD’s

for each FD X — Ain F

7.
8. X* := ATTRIBUTE-SET-CLOSURE (X, £ — {X — A});
9

. if Ae X*
10. E = F—-{X — A},
11. endfor

// Now, we are rid of unnecessary FD’s. Next, reduce left-hand-sides
12. foreach FD X - Ain E

13. for each attribute B € X

14. D = FE—-—{X—>AlUu{(X —B) —» A};

15. (X — B)* := ATTRIBUTE-SET-CLOSURE (X — B, D);
16. if Ae (X - B)*"

17. E = F—-{X — A},

18. E = FU{(X —B) — A};

19. endif

20. endfor

21. return E;

e The following algorithm decomposes a relation R into a set of 3NF re-
lations Ry, Rs, ... that are dependency-preserving and nonadditive.

398

Algorithm: 3NF-DECOMPOSITION (R, F)

Input: Relation R = (Ay, ..., A;) with FD set F.
Output: 3NF decomposition Ry, Ro, ...
1. E := LErT-MIN-COVER (F);
2. for each left-hand-side X; in F
3 R, = {Xi};
4. for each X; —+ A; in I
5) RZ = RZ U {Aj};
6

endfor
// At this point we have a collection of relations Ry, ..., R,
Rn+1 = @;

for each A; ¢ Ry U...UR,
Roy1 = Rop U{Ai}
10. return Ry, ..., R,1;

© o N

e Why does this work?

— First note that all the FD’s find their way (see lines 4-5) into the
decomposition
= it is dependency-preserving.

— Are the resulting relations in 3NF?

* Consider a transitive dependency X — Y — Z in the original
relation.

x The FD X — Z will be removed in minimal cover since X — Y
and Y — Z are sufficient to generate Z € Z*.

* Thus, the decomposition (lines 4-5 above) will not create a rela-
tion with attributes (X,Y, Z) and thus transitive dependencies
will be removed.

— Is the decomposition nonadditive?

« Note this general property: if R is a relation and X — Aisan FD

399

then the decomposition R — A and R’ = (X, A) is nonadditive.

Why? Because a join of R— A and R only involves X and since
X determines A, no spurious tuples will be created.

* In the above algorithm, all decomposition steps are of the above
type.

e An algorithm for decomposing a relation into a collection of nonadditive
BCNF relations.

Algorithm: NoONADDITIVE-BCNF-DECOMPOSITION (R, F')

Input: Relation R, FD set F.
Output: A nonadditive BCNF decomposition Ry, Ro, ...
1. Ry,..,R; := 3NF-DECOMPOSITION (R, F);

2. while 4 R; € Ry, ..., R not in BCNF

3 if X — Y is an FD in R; that violates BCNF
4. Rz = Rz - Y;

5. k = k+1;

6 Ry = (X,Y);

7 endif

8. return Ry, ..., Ry;

Intuition:

If X — Y isin some R; and it violates BCNF
= X is not a superkey of R; (definition of BCNF)
= we create a relation R, = X UY

Here X — Y implies X is a superkey for Ry
= since Y is removed from R;, it does not cause the BCNF violation.

e Unfortunately, we can’t always decompose R into BCNF relations that
are both dependency preserving and nonadditive.

— The nonadditive property is preserved by the above algorithm.

400

— It may produce a decomposition that is not dependency-preserving.
— In general, it is impossible to achieve both.

— Example: consider the relation
PARTS (MANUF, CODE, URL)

where each part has a unique URL.

x The FD’s are:

{MANUF, CODE} — {URL} (unique URL for each part)
{URL} — MANUF (knowing a URL tells you the manufacturer)

x The PARTS relation is not in BCNF since we have a dependency
from an attribute (URL) to part of a key (MANUF).
* Any decomposition will have to separate URL from MANUF.

* This means the FD {MANUF, CODE} — {URL} cannot be

preserved in the decomposition
= no BCNF decomposition of PARTS can be dependency-
preserving.

401

6.19 Formal Schema Design: A Summary

e We saw that ad-hoc designs led to anomalies with insertions, deletions
and modifications.

e To analyze relations, we developed the theory of normalization:

— Definition of functional dependency (FD).
— Properties of FD'’s.

— Computation of attribute closures.

— Definition of Normal forms (primary and general versions).

e In practice: try to achieve BCNF. If not possible, live with 3NF.
If your design is not in 3NF
= you have a weird schema.

e Also need to check for nonadditivity and dependency preservation.

e Before using a join to replace existing relations, check to see tuples don’t
get lost.

e Sometimes, a BCNF decomposition or a 3NF decomposition can lead to
inefficiencies
= many queries require expensive joins.
In this case, one sometimes permits BCNF and 3NF violations for effi-
clency reasons
= violations can be checked separately at leisure.

e Some issues we have not covered:

— Formal proofs asserting the correctness of algorithms.

— Finding minimal FD-sets with other definitions of minimality.

402

— General mechanisms for testing nonadditivity (an algorithm called
the Tableau Chase Method).

— Multivalued FD’s and 4NF.

— Other dependencies and normal forms.

403

