THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

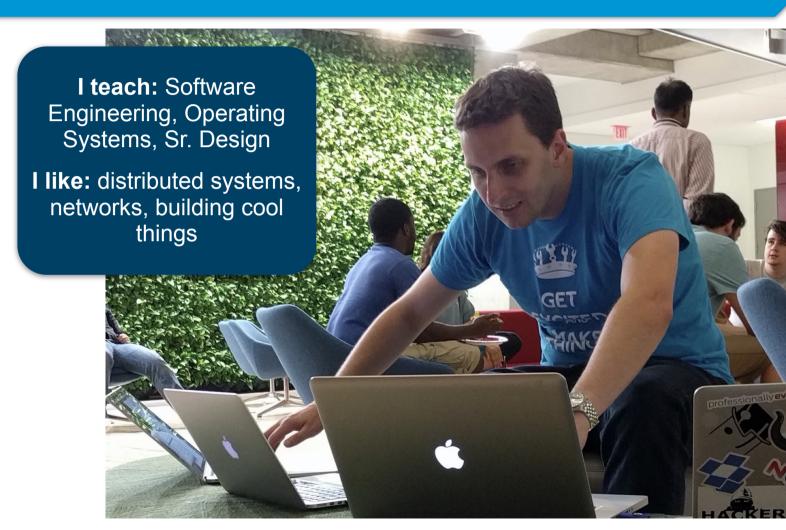
1. Course Overview

CSCI 2541 Database Systems & Team Projects

Wood & Chaufournier

CS 2541: Database Systems & Team Projects

Spring 2021


Professors: Tim Wood and Lucas Chaufournier

TAs: Billy Miller and Jeet Shah


Support Staff: Kevin Deems, Catherine Meadows, and Ethan Baron

https://cs2541-21s.github.io

Tim Wood

Lucas Chaufournier

Course Staff

Grad TAs: Labs, office hours, project mentoring, grading

- Billy Miller and Jeet Shah

Undergraduate team: Labs, office hours, project mentoring

Kevin Deems, Catherine Meadows, Ethan Baron

(full intros in future weeks)

Who are you?

We are looking forward to getting to know all of you in the coming weeks!

If possible, please enable video in Zoom

- Helps us!
- Helps you!

If you can't, be sure to set a zoom profile picture

This year, more than ever, we need human interaction!

What is a Database System?

A Database is a collection of related data

- Typically carefully structured with well defined relations
- Models entities and relations

A Database Management System (**DBMS**) is the software system to store/retrieve/manage the database.

- Provides an interface over the database
- Examples: Oracle, MySQL, MongoDB, Postgres, Dynamo...

A Database System = DBMS + Data + Application

- In this course, we will use MySQL + Python (Flask web app framework)

Your Spring Semester

X Min Z was

Foundations

Makes you think in new ways and understand the underlying principles and algorithms of complex software

Disferent Brent Progressionient

Systems Programming

Teaches you more about the **HW/SW interface** that makes everything work

Reached asil

Database Systems

Practical experience with web and DB programming, and working in a team on a substantial project

What is this course?

Database systems design and implementation

- Theory of relational database design and query languages
 - Relational Model, Relational algebra, SQL
- Application development using Relational DBMS (MySQL), with PHP Python web apps

Intro to database models for unstructured data (Big data)

Overview of NoSQL database models

but wait there's more!

What is this course?

Database systems design and implementation

- Theory of relational database design and query languages
 - Relational Model, Relational algebra, SQL
- Application development using Relational DBMS (MySQL), with PHP Python web apps

Intro to database models for unstructured data (Big data)

Overview of NoSQL database models

Database System Project: Full stack development

Teamwork – SW development in teams

- Project (SW) integration

Improving technical communication skills:

- Writing in the disciplines (WID)* in tandem with CS2501

*Course is not just about Database design – you have to learn and participate in the other two course objectives (WID, Team SW).

What is this course?

One of the most **useful** and **applicable** courses you will take while at GW!

(I hope)

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Intro to Databases & Database Management Systems

Before We Start...

How are you going to succeed in this class?

Pay attention

Make your own notes by slide number

Participate

- Ask at least one question per week (either here or later on Slack)

Ose on Slack)

What is a second of the control of the co

13

Databases in the Real-World

Databases are everywhere in the real-world even though you do not often interact with the DBMS directly.

- ~\$50 billion annual industry

Examples:

- Retailers manage their products and sales using a database.
 - Wal-Mart has one of the largest databases in the world ~40
 Petabytes!
- Online web sites such as Amazon, eBay, etc..
- -Social media sites: Facebook adds >500 Terabytes of new data per day!
- The university maintains all your registration information in a database.
- Mobile apps need to store your local data somewhere

DBMS Examples

There are many different Database Management

Systems

In this class we will (mostly) use MySQL

Have you heard of any other database software platforms?

(type in chat)

An Example: RestaurantDB

Your aunt and uncle want you to help track the top customers at their restaurant

- When are upcoming reservations?
- Which customer visits the most often?
- Who spends the most money?
- How to reward customers who order 10+ dishes?
- What is the most popular dish?
- What is the most popular dish on Tuesdays?

Why not just use Excel?

A spreadsheet can easily store data

- Use columns to structure information
- Enter a new row for each restaurant customer
- Can use formulas to calculate answers to some queries or sort/filter table

But...

Why will Excel have problems with this? What will be difficult?

Why not just use Excel?

A spreadsheet can easily store data

- Use columns to structure information
- Enter a new row for each restaurant customer
- Can use formulas to calculate answers to some queries or sort/filter table

But...

- Some calculations may not be easy (or possible) to write as Excel formulas
- Sorting/filtering tables to see different results will get messy
- Need to be careful about entering data (no validation of format/data type)
- Can accidentally erase old data since data storage and processing are combined in one place

Why not just use files?

You already know how to read and write data to a file...

- Could store data in Excel, then export to CSV (comma separated value file)
- Program could read file's lines and store into a data structure e.g., a Linked List

Different functions could calculate answers for different

queries

Why will file processing have problems with this? What will be difficult?

first_name,last_name,email,phone,reservation,birthday
Kelli,Perris,kperris0@nifty.com,963-930-8531,1/6/2020,9/12/1958
Goddart,Braams,gbraams1@ted.com,534-300-7372,1/26/2020,1/18/1979
Merrel,Clere,mclere2@blogger.com,194-430-7153,1/25/2020,2/12/1957
Towney,Bratcher,tbratcher3@narod.ru,304-227-0235,1/5/2020,7/10/1977
Latia,Peete,lpeete4@w3.org,448-368-1546,1/28/2020,3/6/1964
Hadria,Rann,hrann5@cbsnews.com,206-421-4913,1/24/2020,1/5/1976
Bastian,Clother,bclother6@microsoft.com,104-598-7586,1/25/2020,9/15/19
Corene,Attoe,cattoe7@soup.io,819-616-3261,1/20/2020,3/7/1946
Sara-ann,Creeboe,screeboe8@theatlantic.com,831-348-1941,1/13/2020,4/
Conny,Matthius,cmatthius9@sphinn.com,117-195-6721,1/13/2020,4/26/198
Lorinda,Anselmi,lanselmia@answers.com,958-138-7727,1/24/2020,2/16/198

Why not just use files?

You already know how to read and write data to a file...

- Could store data in Excel, then export to CSV (comma separated value file)
- Program could read file's lines and store into a data structure e.g.,
 a Linked List
- Different functions could calculate answers for different queries

But...

- File system doesn't know anything about file format used in our program - we need to implement all parsing ourselves
- Calculations are tightly tied to data format if we change format we need to rewrite all the code
- Redundancy many similar programs would all have code for parsing files
- Hard to support multiple simultaneous users

Scaling up

What if we have a chain of restaurants?

What becomes more complex?

Can Excel/file parsing work in this environment?

Scaling up

What if we have a chain of restaurants?

Uhoh...

- We need to support concurrent updates/reads to the data
- We need to ensure data remains **consistent** despite simultaneous access
- Google Sheets might make it easier for multiple users to make edits, but doesn't guarantee these properties!
- Expanding our custom file parser to support network access is a major effort!

So what can we conclude thus far....

Excel is limited in scale and flexibility

File processing is not a portable or efficient solution

Need a "database approach" that provides data independence from the processing acting on it

Need to support **simultaneous access** while retaining data **integrity**

So how do we specify business rules of the data, relationships within the data, who gets access to what data... How to organize and manage the data?

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

A DBMS should provide...

Structure that is independent of the underlying file formats

Queries to flexibly read, update, and delete information

Transactions
that provide
guarantees
about multi-user
consistency

DBMS: How to structure the data?

Structure that is independent of the underlying file formats

What is the **data** needed?

- Eg: What do we need to store to uniquely identify a restaurant customer?

How to **store & organize** the data?

- restroiont Costing
- How many attributes are really needed about a student/ course/faculty
- What is an efficient way to organize the data?
 - This is why we will need to study schema design and Normal forms

Data Models and Representation

Structure that is independent of the underlying file formats

A data model is a formal framework for describing data.

- Data objects, relationships, constraints (business rules)
- Provides primitives for data manipulation and data definition
- Provides us with the mathematical basis to prove/assert properties and show correctness of algorithms

The **relational model** was the first model of data that is **independent** of its data structures and implementation

- Data organized as **relations** ("tables")

Not the only way!

- NoSQL databases model unstructured and big data without requiring strict relations
- Other data models: network, hierarchical, Object Oriented...
- Relational model is inefficient for many such applications

DBMS: How to provide abstraction?

Structure that is independent of the underlying file formats

The major problem with developing applications based on files is that the application is **dependent** on the file structure.

There is no **program-data independence** separating the application from the data it is manipulating.

- If the data file changes, the code that accesses the file may require changes to the application.

A major advantages of DBMS is they provide **data abstraction**.

Data abstraction allows the internal definition of an object to change without affecting programs that use the object through an external definition.

Database Schema

Structure that is independent of the underlying file formats

Similar to types and variables in programming languages

Schema - structure of the database

Ex: database contains information about Students and Courses and the

relationships between them

 Defines columns and the type of data that can be stored in them

Occurs at multiple levels:

 Logical Level: Database design, definition of structure and relations

 Physical Level: Implementation of how data is stored on disk

Levels of Data Modeling

Structure that is independent of the underlying file formats

Logical Level: describes data stored in the database and the relationship between them

ex: type customer {

name: string

email: string

birthday: date }

Physical Level: describes how a record is stored (i.e., how is data organized on the disk)

- Ex: sorting, page alignment, index

Big Idea: Logical and Physical level independence

Can change one without changing the other!!

Data Independence

Structure that is independent of the underlying file formats

√ Logical data independence

- Protects the user from changes in the logical structure of the data:
- Lets us reorganize the customer "schema" without changing how we query/store it

Physical data independence

- Protects the user from changes in the physical structure of data:
- Lets us change how student data is stored in memory/disk without changing how the user would write the query

Additional Views:

- DB applications hide details of data types and can also hide some information (salary?) for security & privacy purposes


Summary-Levels of Abstraction

Structure that is independent of the underlying file formats

Many views, single conceptual (logical) schema and physical schema

- Views describe how users see the data
- Conceptual/Logical schema defines logical structure
- Physical schema describes the files and indexes used

Schemas are defined using DDL; data is modified/queried using DML

Confusing? Curious?

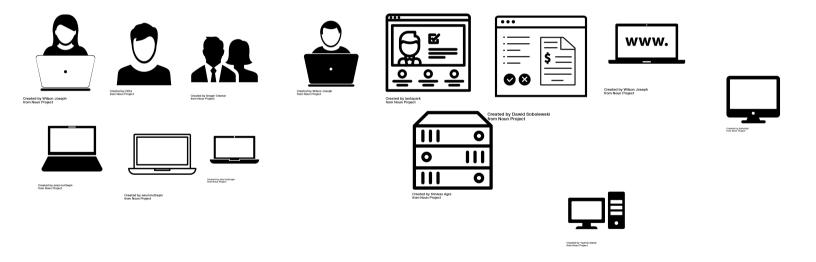
Get to know each other...

and a website.

in 5 minutes!

Meet a random classmate

- 2. Pick an appropriate website that one of you visited in the last week
- Discuss what kind of data you think the website needs to store
- Think about how that data might be structured
- 5. Write your answers on a slide


http://bit.ly/DB21-1

We will come back to these later!

Attributions

These slides are adapted from materials made by Prof. Bhagi Narahari

Image attribution:

