
12. NoSQL

CSCI 2541 Database Systems & Team Projects

Wood & Chaufournier

Includes slides from Prof. Bhagi Narahari

Logistics...
Last time: Benefits and Costs of RDBMS

This time: Not Just SQL

Wednesday:

뺻 Data Mining / Analytics

뺻 Project Status Checks

 2

Logistics...
Last time: Benefits and Costs of RDBMS

This time: Not Just SQL

Wednesday:

뺻 Data Mining / Analytics

뺻 Project Status Checks

If your team does not yet have a database schema
deployed and accessible from a web interface, then
you are in danger of failing the project.

뺻 Please come to office hours (especially mine!) if you are

feeling behind and want advice on how to catch up
 3

c

Class support
We have ~12 hours of office hours every week

If you need help, come to us!

Find the balance:

뺻 Problem solve, learn things on your own, practice

debugging

뺻 but get help when you aren't making progress or aren't

sure what to try!

The TAs/UTAs/LAs are an amazing resource for you

뺻 Maybe you should consider being one next year?!

 4

RDBMS Pros and Cons

 5

Strengths of Relational DBs?

Weaknesses of Relational DBs?

Well defined structure integrity type

ACID
constraintsChecky

Eliminate redundancy

Fixed structure
waste space
hard to adap

RDBMS Pros and Cons

 6

Strengths

ACID properties
(Atomic, Consistent,
Isolated, Durable)

Widespread/
standardized

Weaknesses

Strong consistency
properties are
expensive to enforce

Strict structure is
difficult to adapt

Some expensive
features are not
needed by some apps

Trend 1
Data is getting
bigger:

“Every 2 days we
create as much
information as we
did up to 2003”  
– Eric Schmidt,
Google in 2010

 7

Facebook generates
 4 Petabytes per day! (2020)

1

79

Trend 2: Connectedness

 8

In
fo

rm
at

io
n

co
nn

ec
tiv

ity

Text
Documents

Hypertext

Feeds

Blogs

Wikis

UGC

Tagging
Folksonomies

RDFa

Onotologies

???

Data is more connected

Trend 3: Data is often Semi-Structured (or no structure)

If you tried to collect all the data of every movie ever
made, how would you model it?

Actors, Characters, Locations, Dates, Costs,
Ratings, Showings, Ticket Sales, etc.

 9

GW CSCI 2541 Databases: Wood & Chaufournier

Relational Databases Challenges
Features of relational databases make them
"challenging" for certain problems:

1. Fixed schemas – defined ahead of time, changes are
difficult, and lots of real-world data is “messy”. Relational
design requires lots of Joins. So get rid of schemas

2. Complicated queries – SQL is declarative and powerful but
may be overkill. Instead, do the work in application code

3. Transaction overhead – Not all data and query answers
need to be perfect. Close enough is sometimes good
enough

4. Scalability – Relational databases may not scale sufficiently
to handle high data and query loads or this scalability
comes with a very high cost. Find new ways to scale

 10

F

GW CSCI 2541 Databases: Wood & Chaufournier

Database Scaling
RDBMS are “scaled up” by adding hardware
processing power

뺻 Need more performance? upgrade your machine!

 11

Why is it difficult to replicate or partition an RDBMS to
improve performance by using multiple computers?

RAN
KDU

to a single computer
server

Empto ees

Qc

Let's consider the Python Dictionary

Access any Value from the dictionary using its Key
뺻 Dictionary = Key/Value Store = Hash Table

Suppose we have to add lots and lots more fields...

 12

myDict = {
 "name": "Maya",
 "address": "156 East 24th street",
 "city": "New York",
 "state":"New York",
 "cars": ["Ford","Honda"]
}

How could we scale this "database"?

get set

IN

GW CSCI 2541 Databases: Wood & Chaufournier

Scaling a Dictionary (KV Store)
A Dictionary (or Key-Value store) can be:

Scaled UP by getting a more powerful server

뺻 Just like RDBMS

Scaled OUT by adding another server and
partitioning the data

뺻 KV store doesn't need to support queries across objects!

뺻 Consistency is not a problem, easy to exploit parallelism

from many servers

 13

GW CSCI 2541 Databases: Wood & Chaufournier

Dictionaries can be Nested
A "value" can be a
complex data structure
of its own!

Each Employee can
have several fields
within its own dictionary

We can partition the KV
store so each server
holds a set of
Employees

Be careful - key must be unique!

 14

employees = {}
employees["Brenda"] = {
 "name": "Brenda Kali",
 "address": "156 East 24th St",
 "city": "New York",
 "state":"New York",
 "cars": ["Ford","Honda"]
}
employees["Jose"] = {
 "name": "Jose Constantino",
 "address": "231 West 181st St",
 "city": "New York",
 "state":"New York",
 "cars": ["Tesla"]
}
...

GW CSCI 2541 Databases: Wood & Chaufournier

Employee Database
Two possible structures

 15

ID name address ...

Brenda Brenda Kali 156 E.
24th St ...

Jose Jose
Constantino

231 W.
181st St ...

...

employees = {}
employees["Brenda"] = {
 "name": "Brenda Kali",
 "address": "156 East 24th St",
 "city": "New York",
 "state":"New York",
 "cars": ["Ford","Honda"]
}
employees["Jose"] = {
 "name": "Jose Constantino",
 "address": "231 West 181st St",
 "city": "New York",
 "state":"New York",
 "cars": ["Tesla"]
}
...

ID car

Brenda Ford

Brenda Honda

Jose Tesla

RDBMS / SQL KV Store / Not SQL

Which is better?!

EE

cars

GW CSCI 2541 Databases: Wood & Chaufournier

It depends!
Do you need to filter employees by where they live?

뺻 Use RDBMS! KV store just knows about the key!

What if each employee has unique set of fields that
must be stored?

뺻 Use KV store since internals of an employee are entirely

customizable

What if scale of data is really really big?

뺻 Use KV store IF you don't need to worry about cross-

record consistency or queries

 16

GW CSCI 2541 Databases: Wood & Chaufournier

Does this look familiar to anyone?
(Reformatted slightly)

 17

{'Brenda': {
'name': 'Brenda Kali',
'address': '156 East 24th St',
'city': 'New York',
'state': 'New York',
'cars': ['Ford', 'Honda']},

'Jose': {
'name': 'Jose Constantino',
'address': '231 West 181st St',
'city': 'New York',
'state': 'New York',
'cars': ['Tesla']}

}

JIN

I

GW CSCI 2541 Databases: Wood & Chaufournier

JSON, XML, etc
'Schema-less' data structure definitions

뺻 Data format, not a full DBMS!

JavaScript Object Notation (JSON, pronounced "Jason")

뺻 Serializes (saves) data objects into text form

뺻 Human-readable

뺻 Semi-structured

뺻 Pervasively used in many languages (beyond JS)

Used to transmit most data to/between web services
over AJAX/REST interfaces

뺻 Client-side javascript makes a request to server, server

responds with JSON data, client updates local browser view

 18

O
e

T T

GW CSCI 2541 Databases: Wood & Chaufournier

JSON Example
JSON constructs:

뺻 Values: number, strings (double quoted), true, false, null

뺻 Objects: enclosed in { } and consist of set of key-value

pairs (dictionary)

뺻 Arrays: enclosed in [] and are lists of values

뺻 Objects and arrays can be nested

Example:

 19

I

GW CSCI 2541 Databases: Wood & Chaufournier

JSON Parsers
JSON parser converts JSON file (or string) into program
objects (checks syntax)

뺻 In javascript, can call eval() method on variable containing a JSON

string

Many languages have APIs to allow for creation and
manipulation of JSON objects

Common use:

뺻 JSON data provided from a server (NoSQL or relational) and sent to

web client

뺻 Web client uses javascript to convert JSON into objects and

manipulate as required

Converters for csv to json
 20

GW CSCI 2541 Databases: Wood & Chaufournier

What is NoSQL?
Stands for No-SQL or Not Only SQL??

What is definition….No definition!! But common some
characteristics:

Class of non-relational data storage systems

Schema-less: usually do not require a fixed schema nor do
they use the concept of joins

Cluster friendliness – ability to run on large number of servers
(distributed system / cluster)

All NoSQL offerings relax one or more of the ACID properties

 21

I E

scalability

GW CSCI 2541 Databases: Wood & Chaufournier

NoSQL - advantages
NoSQL databases are useful for several problems not well-suited
for relational databases:

뺻 Variable data: semi-structured, evolving, or has no schema

뺻 Massive data: terabytes or petabytes of data from new applications (web

analysis, sensors, social graphs)

뺻 Parallelism: large data requires architectures to handle massive

parallelism, scalability, and reliability

뺻 Simpler queries: may not need full SQL expressiveness

뺻 Relaxed consistency: more tolerant of errors, delays, or inconsistent

results ("eventual consistency")

뺻 Easier/cheaper: less initial cost to get started

NoSQL is not really about SQL but instead developing data
management systems that are not relational.

 22

I

GW CSCI 2541 Databases: Wood & Chaufournier

CAP Theorem..getting around ACID
The CAP Theorem (proposed by Eric Brewer) states that there
are three properties of a data system:

뺻 Consistency

뺻 Availability

뺻 Partitions

but you can have at most two of the three properties at a
time
뺻 Since scaling out requires partitioning, many NoSQL systems

sacrifice consistency for availability/partitioning.

Eventual Consistency - weaker than ACID

뺻 Kind of what it sounds like

뺻 Does not guarantee updates are immediately visible

뺻 But eventually all nodes will agree on a final value

 23

E 0

