Good and Bad Schemas

Functional Dependencies

Even more normal forms!

Looking ahead...

Week 6 (now)

- Relational Algebra HW was due
- Flask+SQL Lab was due
- Lecture: Finishing Normal forms
- Lab: Using Amazon Web Services to run a database in the cloud

Week 7

- SQL Query HW due Wednesday (individual)
- SQL Query HW due Wednesday (Individual) Normalization HW due Wednesday (can discuss with others) S 50 75
- Lab: Shopping Cart Project

Week 8

- Monday 3/1: Midterm exam on Blackboard during class
- If you need to arrange a different time to take the exam (eg time zone issue, contact me by Wednesday 2/24

Normal Forms 1-3

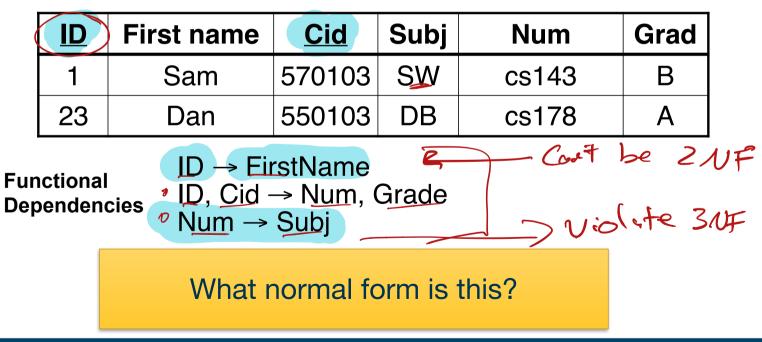
1NF: Attributes should be atomic and tables should have no repeating groups

- Prevents messiness within a cell and repetition of rows

2NF: There cannot be $X \rightarrow A$ where X is a partial candidate key for R

- Doesn't forbid non-prime to non-prime dependencies
- Prevents repetition of cells across rows

3NF: There cannot be $X \rightarrow A$ where X is not a full


candidate key for R (unless A is a Key)

- Only allows dependencies on Keys
- Prevents repetition of data within a row

Normal Form

Normal form reference:

- 2NF: Cannot have partial Key on left hand side (LHS)
- 3NF: Meet 2NF and LHS must be full Candidate Key or RHS must be a key

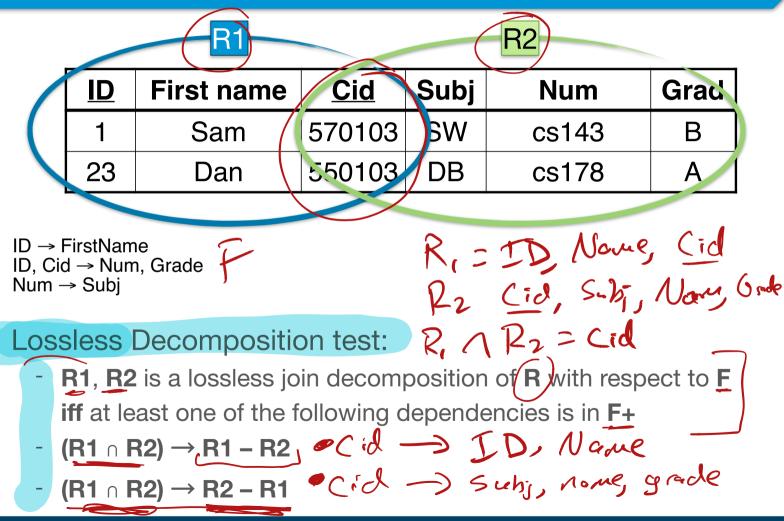
GW CSCI 2541 Databases: Wood & Chaufournier

Normal Form

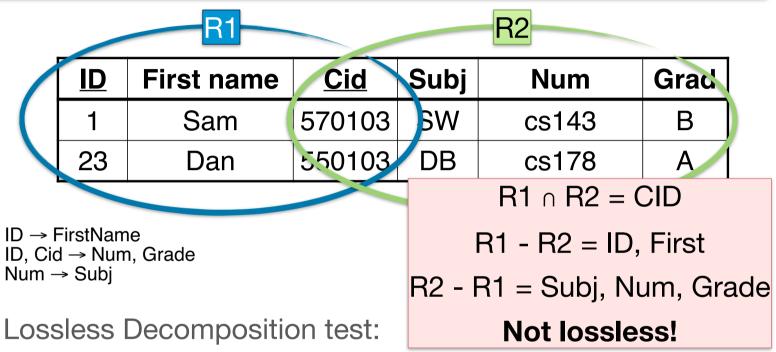
Normal form reference:

- 2NF: Cannot have partial Key on left hand side (LHS)
- 3NF: Meet 2NF and LHS must be full Candidate Key or RHS must be a key

ID	First name	Cid	Subj	Num	Grad
1	Sam	570103	SW	cs143	В
23	Dan	550103	DB	cs178	A


Functional Dependencies $ID \rightarrow FirstName$ partial key ID violates 2NF!

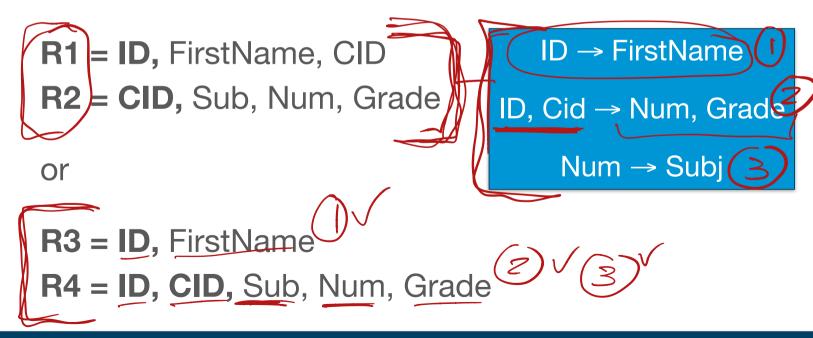
ID, Cid \rightarrow Num, Grade


Num → Subj non-prime LHS would also violate 3NF!

Only meets 1NF

How to Judge Decomposition?

Lossless Decomposition



- R1, R2 is a lossless join decomposition of R with respect to F iff at least one of the following dependencies is in F+
- (R1 \cap R2) \rightarrow R1 R2
- (R1 \cap R2) \rightarrow R2 R1

Dependency Preservation

We also must maintain dependences

After decomposition from **R** to **R1 ... Rn**, the closure of FDs of all **R1...Rn** must be equivalent to that of **R**

Dependency Preservation

We also must maintain dependences

After decomposition from **R** to **R1 ... Rn**, the closure of FDs of all **R1...Rn** must be equivalent to that of **R**

R1 = ID, FirstName, CID **R2 = CID,** Sub, Num, Grade

or R1,R2 will lose the ID,CID -> Num, Grade FD

ID → FirstName ID, Cid → Num, Grade Num → Subj

R3 = ID, FirstName **R4 = ID, CID,** Sub, Num, Grade

R3,R4 will maintain all FDs

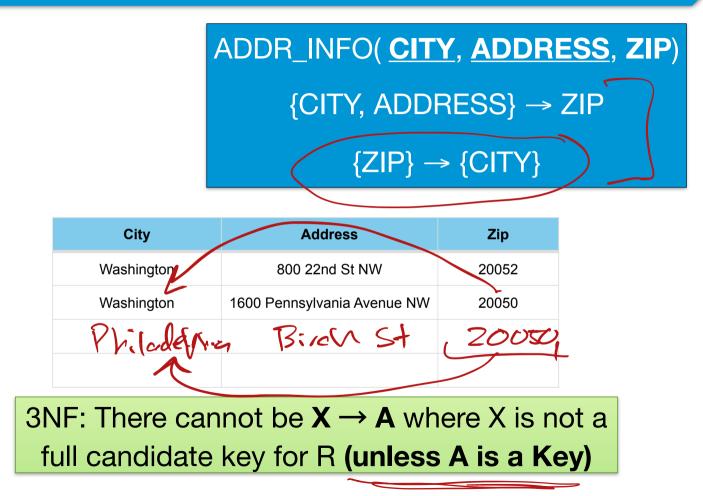
3NF ... 9NF - - - -

It is **always possible** to decompose a relation **R** into a set of relations R1...Rn which is **dependency** / **preserving** and **lossless**

3NF is the baseline for acceptable DB normalization in practice!

but 3NF is not perfect...

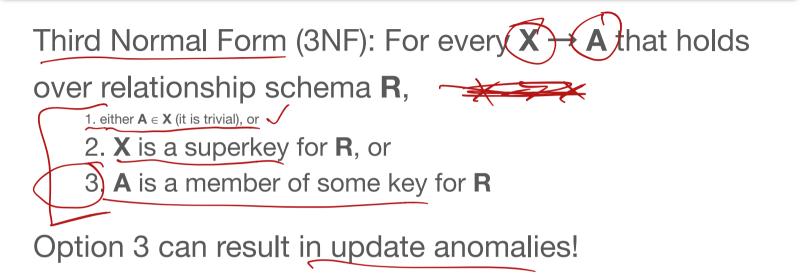
When does 3NF fail?


Suppose we want to store addresses:

Meets 3NF since LHS is a full Key or RHS is a Key

3NF: There cannot be $X \rightarrow A$ where X is not a full candidate key for R (unless A is a Key)

When does 3NF fail?


When does 3NF fail?

ADDR_INFO(<u>CITY</u>, <u>ADDRESS</u>, ZIP) {CITY, ADDRESS} \rightarrow ZIP {ZIP} \rightarrow {CITY}

City	City Address	
Washington	800 22nd St NW	20052
Washington	1600 Pennsylvania Avenue NW	20050
Philadelphia	101 South Street	20050

3NF does not prevent insertion/update of tuples which violate our FDs!

3NF vs BCNF

Boise-Codd Normal Form (BCNF) resolves this issue:

For every $X \rightarrow A$ that holds over relationship schema R, 1. either $A \in X$ (it is trivial), or 2. X is a superkey for R

BCNF

BCNF is stricter than 3NF

- If a relation is in BCNF, it is also in 3NF;
- if it is not in 3NF, it is not in BCNF

Note:

- There are polynomial time algorithms guaranteed to provide a lossless, dependency preserving decomposition into 3NF
- but a dependency preserving decomposition into BCNF may not exist, and no polynomial time algorithm for lossless decomposition is known.

Normalization Summary

Functional Dependencies: Capture the dependencies between attributes

Normalization: Provides a schema that ensures functional dependencies will be kept consistent, without losing data

Normal Forms: Try to achieve BCNF, but 3NF is OK in some cases (1NF/2NF -> bad design!)

To the cloud!

Why use the cloud? DAMIZON AWS Google CP MS Azure

- Pay-as-you go
- Expand quickly on demand
- Don't need to worry about (many) IT issues

... but is the cloud perfect?

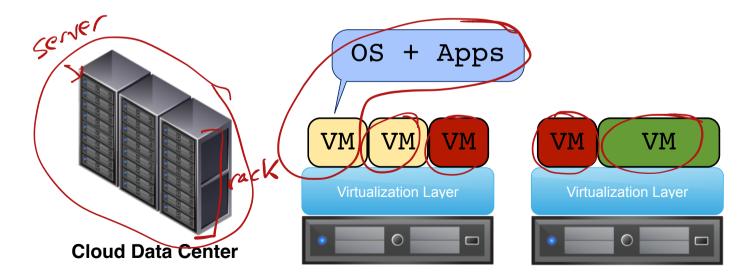
[spoiler alert] no.

Infrastructure as a Service (IaaS)

Infrastructure clouds rent raw servers

- Connect to server remotely
- Configure OS and install whatever applications you want

Great flexibility for cloud user


Less management handled by cloud operator

Your own computer or disk on demand!

Virtual Machines

Virtualization is used to **split up** a physical server

- Allows multiple customers to share one machine
- Simplifies management since VMs are not strictly tied to HW
- Provides isolation between cloud users

Amazon EC2

- Infrastructure as a Service Cloud (laaS)
- Froromy of Scale
- Can rent server and storage resources

	Description	Cost
t3.Micro	1GB RAM, up to 1 core, no storage	\$0.01) hour
t3.Large	8GB RAM, ~2 cores, no storage	\$0.08 / hour
c5.18xlarge	144GB RAM, 72 cores, no storage	\$3.06 / hour

EBS	Network attached storage	\$0.10 / GB per month
-----	--------------------------	--------------------------