
Week 8 Lab
Version Control and Distributed Workflows

Chaufournier & Wood
CSCI 2541

We have to work in teams??
How do we all work on the same code base without
stepping over each other?

Why do we need version control
How do you decide whose changes to use?

Code Base

A B C

B

B

Jane Modifies file B

Ron Modifies file B

Code Base

A B C?

Why do we need version control
The files conflict without a reasonable way to decide.

Code Base

A B C

B

B

Jane Modifies file B

Ron Modifies file B

Code Base

A B C

Why do we need version control

Code Base

A B C

B

B

Jane Modifies file B

Ron Modifies file B

Code Base

A B C

So what do we do?

There’s got to be a better way…

Distributed Version Control

Main Code Base

Think of your codebase like the main timeline

A B C

Main Code Base

To make changes you first create a new branch

A B C

New Branch

A B C

Main Code Base

Entering the Modified State

A B C

New Branch

A B C

Modified State

Any changes you make here are just on your local branch

 and don’t affect the main code base. You can experiment

freely while developing new features without worrying

about breaking the main branch.

Main Code Base

Entering the Staged State

A B C

New Branch

A B C B

Modified Staged

D

The Staged State prepares your changes

for being merged back into the

master branch. It contains only the

code you’ve modified

D

Main Code Base

Committing your changes

A B C

New Branch

B

Staged

D

Committing your code, makes your changes

active in your branch. Anyone who clones your

branch will see your changes. The changes

ARE NOT active in the main code base yet.

A B C

Modified

D A B C

Committed

D

Main Code Base

Merging your changes to main

A B C

New Branch

B

Staged

DA B C

Modified

D A B C

Committed

D

A B C D

B D

By merging to Main you:

•Take all files that have modifications

•Compare them against the main branch.

• If no ones made changes the changes are applied

• If someone modified the same code, you get a merge
conflict. Manually resolve it

How does this tie into Git?

Main Code Base

Creating a git repo

A B C

 git init

git remote add origin git@github.com:thelimeburner/testRepo.git

Main Code Base

Creating a new branch

A B C

myBranch

A B C

git checkout -b myBranch

Main Code Base

Switching to an existing branch

A B C

myBranch

A B C

git checkout myBranch

Main Code Base

Entering the Staged State

A B C

A B C B

Modified Staged

D

git add fileB fileD

D

myBranch

Main Code Base

Committing your changes

A B C

B

Staged

DA B C

Modified

D A B C

Committed

D

git commit -m “Adds support for new endpoint”

All commits need a human

readable commit message

myBranch

Main Code Base

Bringing Mains changes back into your branch

A B C

B

Staged

DA B C

Modified

D A B C

Committed

D

A B C D

A C

git checkout main

git pull main

git checkout myBranch

git merge main

myBranch

Main

Getting your changes into Main with Pull Requests

A B C

A B C

Committed

D

A B C D

git push origin myBranch

myBranch
Pull Request

Main Code Base

Marking an official release of your code

git tag phase1 commit-hash
phase1

Pull Requests

• Pull Requests allow you to inform others on your team about a new features
or code being added to the codebase

• They provide a way for teams to discuss changes being made and enable an
easy way to do code review

• Changes in a pull request display whats been modified and is to be merged
into main if approved.

• Once a pull request is approved by reviewers. The code is merged into main
and becomes apart of the codebase.

Merge Conflicts
Example of Merge Conflict

• Arise when two people edited
the same line in a file.

• Require manual intervention

• You need to go into the file and
decide which change should be
persisted.

• Delete the line you don’t want
along with the added lines from
git.

• Commit changes and git merge
again

Code Reviews
• Code Review is the process by which team members review each others code

for things like

• Bugs

• Style choices

• Dead code

• Security issues

• Design Decisions

• and much more

• A good place to ask clarifying questions or act as knowledge transfer

• Code Reviews normally take place right before merging a branch into master and

is usually an iterative process.

• Teams typically have rules that say a code change needs at least 1 review before

merging

@app.route('/')
def hello_world():
 visitDate = "March 2rd 2020"
 x = """
 <html>
 <body>
 <h1>Todays Date is {0}</h1>
 <p>Welcome to our website.</p>
 </body>
 </html>
 """
 #print("DebuggCode")
 # x = 0
 return outputText.format(x)

@app.route('/endpoint2')
def endpoint2():
 visit_date = "March 3rd"
 print("DEBUGG, VISITED")
 output_text = """<html>
 "<body>"
 <h1>Todays Date is {1}</h1>
 <p>Welcome to our website.</p>
 </body>
 </html>
 """
 return output_text.format(visit_date)

app.run(host='0.0.0.0', port=8080)

Sample Code

@app.route('/')
def hello_world():
 visitDate = "March 2rd 2020"
 x = """
 <html>
 <body>
 <h1>Todays Date is {0}</h1>
 <p>Welcome to our website.</p>
 </body>
 </html>
 """
 #print("DebuggCode")
 # x = 0
 return outputText.format(x)

@app.route('/endpoint2')
def endpoint2():
 visit_date = "March 3rd"
 print("DEBUGG, VISITED")
 output_text = """<html>
 "<body>"
 <h1>Todays Date is {1}</h1>
 Welcome to our website.
 </body>
 </html>
 """
 return output_text.format(visit_date)

app.run(host='0.0.0.0', port=8080)

Variable naming style is not consistent,
Date is incorrect

Use a descriptive variable name

Remove Dead code

Remove debug statements to keep code
clean

This should be a zero instead of a 1

Should we wrap these in a paragraph tag?

A sample Code Review on Github

Tips for working with Distributed Version Control

• Use branch protection rules to protect your main branch from being changed without
code review

• Always pull the latest changes before trying to merge to master.

• Try to keep pull requests to small changes that are atomic. This simplifies code
review.

• Name new branches feature/new-feature or bugfix/fixing-bad-logic to make it
easy to understand what a branch does.

• Use git tags to mark official releases that never change.

• Incorporate Peer Review into your git workflow.

Assignment 1
https://classroom.github.com/g/lhuM3Li7

• Together with your team setup a repo from the link above

• Name it based on your team tag

• Open the README.md in the assignment and complete the assigned tasks

• Create a new endpoint and practice the git workflow

• Record your team norms and code review standards

