
Lab for Week 11
Data Structures and MYSQL

Chaufournier & Wood
CSCI 2541

Lists

• Lists store multiple items in a single value.

• Ordered and accessible by index.

• Adding an item, adds it to the end of the list.

• Mutable: you can add, remove, update the values of a list.

myList = ["Apples", "Oranges", "Bananas", "Grapes"]

fruit3 = myList[2]

myList[1] = “Pineapple”

myList.append(“Kiwi”)

["Apples", "Pineapple", "Bananas", “Grapes","Kiwi"]

Tuples

• Lists store multiple items in a single value.

• Ordered and accessible by index.

• Immutable: you can’t modify a tuples values once its created.

myTuple = ("Apples", "Oranges", "Bananas", “Grapes")

fruit1 = myTuple[0]

Tuples

• Be careful with Tuples and iterators.

• A lot of functions and libraries expect a tuple.

• If you provide a string it’s treated as a tuple and you get weird results

user = “Dan”

c.execute(“select * from users where username=?,user)

c.execute("select * from users where username=?”,(user,))

Gets treated as
D,a,n

Gets treated as
Dan

Dictionaries

• Dictionaries allow you to store key value pairs

• Store arbitrary amounts of structured data.

• Mutable: You can add, remove, and update values.

• You can nest data structures inside of dictionaries.

myDict = {

	 "name": "Maya",

	 "address": "156 East 24th street",

	 "city": "New York",

	 "state":"New York",

 "cars": ["Ford","Honda"]

}

myDict[“name”] = “Bob”

myDict[“age”] = 36

Dictionaries are structured data which makes it
easy for us to convert it between different data

structures and formats as needed. Ex. Json

Dictionaries

• Dictionaries allow you to store key value pairs

• Store arbitrary amounts of structured data.

• Mutable: You can add, remove, and update values.

• You can nest data structures inside of dictionaries.

myDict = {}

myDict[“color”] = “red”

myDict[“day”] = “Monday”

myDict[“months”] = [“Jan”,”Apr”,”May”]

myDict[“user”] = {

 “Name”:”Alice”

 “Username”: “a123”

 }

{

“color” : “red”,

“day” : “Monday”

“months”: [“Jan”,”Apr”,”May”]

“user”: {“Name”:”Alice”,

 “Username”:”a123”

 }

}

Dictionaries resemble a table structure

myDict = {

	 "name": "Maya",

	 "address": "156 East 24th street",

	 "city": "New York",

	 "state":"New York",

}

Name Address City State

Maya 156 East 24th
street New York New York

So it stands to reason we should
be able to use dictionaries with
mysql.

Previously we would do the following:
import mysql.connector

mydb = mysql.connector.connect(

 host="10.0.12.12",

 user="student",

 password="seas",

 database="dev"

)

c = mydb.cursor()

c.execute(‘‘‘Select * from users’’’)

results = c.fetchall()

c.close()

Import the mysql.connector library

Create a new connection to

the database

Create a cursor. It’s a pointer

to the database and tracks

the location of operations.

The query we want to

execute on the database.

Fetch the results from the cursor

Close the cursor

to save memory

Now we just make one small modification
import mysql.connector

mydb = mysql.connector.connect(

 host="10.0.12.12",

 user="student",

 password="seas",

 database="dev"

)

c = mydb.cursor(dictionary=True)

c.execute(‘‘‘Select * from users’’’)

results = c.fetchall()

c.close()

Import the mysql.connector library

Create a new connection to

the database

Create a cursor. It’s a pointer

to the database and tracks

the location of operations.

The query we want to

execute on the database.

Fetch the results from the cursor

Close the cursor

to save memory

Enable dictionary results

Now results are returned back as dictionaries

c = mydb.cursor(dictionary=True)

c.execute(‘‘‘Select * from users’’’)

results = c.fetchall()

firstname = results[0][“Name”]

address = results[0][“Address”]

c.close()

Select all users from the table

Fetch all the results from the cursor

Access the firstname and

address of the first result

The results are a list of a dictionaries,

one per row of results

We get back results that look like the following when we call fetchall:

[

{“Name”: “Bob Smith”, “Address”: “1st street”, City: “Washington”,”State”: “DC” },

{“Name”: “Alice White”, “Address”: “2nd street”, City”: “New York”, “State”: “NY”},

{“Name”: “Dana Rice”, “Address”: “3rd street”, City”: “New York”, “State”: “NY”}

]

Essentially a list of dictionary objects. One for each row in your result set.

Now results are returned back as dictionaries

c = mydb.cursor(dictionary=True)

c.execute(‘‘‘Select * from users’’’)

results = c.fetchall()

firstname = results[0][“Name”]

address = results[0][“Address”]

c.close()

Select all users from the table

Fetch all the results from the cursor

Access the firstname and

address of the first result

The results are a list of a dictionaries,

one per row of results

Using this pattern we can
iterate through the results

and use the data in our logic.

How can we take advantage of
this when returning data to users?

We can pass the length and list of users to our template

c = mydb.cursor(dictionary=True)

c.execute('''Select * from users''')

results = c.fetchall()

c.close()

return render_template("index.html",len=len(results), users=results)

We pass the length so we can iterate
through the list of users.

We pass results as a list so our
template can pull the needed data.

Our template can then iterate through the dictionary

<html>

<body>

{%for i in range(0, len)%}

 <p>{{users[i]["Name"]}}</p>

{%endfor%}

</body>

</html>

index.html

Our template can then iterate through the dictionary

<html>

<body>

{%for i in range(0, len)%}

 <p>{{users[i]["Name"]}}</p>

{%endfor%}

</body>

</html>

index.html

This looks a little messy. Is there a cleaner way
to do this?

Our template can then iterate through the dictionary

<html>

<body>

{%for user in users%}

 <p>{{user["Name"]}}</p>

{%endfor%}

</body>

</html>

index.html

This is much neater but is there still a better
way?

Our template can then iterate through the dictionary

<html>

<body>

{%for user in users%}

 <p>{{user.Name}}</p>

{%endfor%}

</body>

</html>

index.html

This is much cleaner and allows you to directly
access members of an object.

