
Week 15 Lab
Communicating With HTTP and REST

Chaufournier & Wood
CSCI 2541

We've talked about web servers and browsers
But not how they communicate with each other

WebserverWeb Browser

?

Ideally we want something that covers both how
clients talk to servers and how servers talk to each other

WebserverWeb Browser

?

Webserver

?

Ideally we want something that covers both how
clients talk to servers and how servers talk to each other

WebserverWeb Browser Webserver

HTTP/HTTPS HTTP/HTTPS

Hypertext Transfer Protocol
HTTP

• HTTP is versatile request/response communication standards

• Defined in RFC 1945 and RFC 2616, it proposed a set of methods for
communicating across the web.

• Defined a standard set of request types and response codes that enables the
various technologies across the web to communicate using a standard
protocol.

• Defined the following methods GET, HEAD, POST, PUT,
PATCH,DELETE,TRACE, CONNECT for performing different operations.

Fetching Data with GET
Format: GET URL Version

GET /index.html HTTP/1.1

Host: www.example.com
User-Agent: Mozilla/5.0

Accept: text/html, */*

Accept-Language: en-us

Accept-Charset: utf-8

Connection: keep-alive

HTTP/1.1 200 OK

Date: Sun, 08 Feb xxxx

Server: Apache/1.3(WIN32)

Last Modified:Sat, 07 Feb xxxx

ETag: "0-23-402421"

Accept-Ranges: bytes

Content-Length: 35

Connection: close

Content-Type: text/html

<h1>My Home Page</h1>

Sample Get Request Sample Response

{Header

{Body

{Blank Line

{Header

{Body

{Blank Line

http://www.example.com

Sending Data with POST
Format: POST URL Version

POST /login.html HTTP/1.1

Host: www.example.com
User-Agent: Mozilla/5.0

Accept: text/html, */*

Accept-Language: en-us

Accept-Charset: utf-8

Connection: keep-alive

{

"username": "lucasch"

"Password": "heydontlook"

}

Sample POST Request

{Header

{Body

{Blank Line

Response

HTTP/1.1 200 OK

Date: Sun, 08 Feb xxxx

Server: Apache/1.3(WIN32)

Last Modified:Sat, 07 Feb xxxx

ETag: "0-23-402421"

Accept-Ranges: bytes

Content-Length: 0

Connection: close

Content-Type: text/html

{Header

{Body

{Blank Line

http://www.example.com

WebserverWeb Browser Webserver

GET /index.html HTTP/1.1

Host: www.example.com
User-Agent: Mozilla/5.0

Accept: text/html, */*

Accept-Language: en-us

Accept-Charset: utf-8

Connection: keep-alive

HTTP/1.1 200 OK

Date: Sun, 08 Feb xxxx

Server: Apache/1.3(WIN32)

Last Modified:Sat, 07 Feb xxxx

ETag: "0-23-402421"

Accept-Ranges: bytes

Content-Length: 35

Connection: close

Content-Type: text/html

<h1>My Home Page</h1>

The web browser sends a request asking for the
home page.

http://www.example.com

WebserverWeb Browser Webserver

POST /login.html HTTP/1.1

Host: www.example.com
User-Agent: Mozilla/5.0

Accept: text/html, */*

Accept-Language: en-us

Accept-Charset: utf-8

Connection: keep-alive

{

form :{

 "username": "lucasch"

 "Password": "heydontlook"

 }

}

The Web Browser sends a request to login
POST /authenticate HTTP/1.1

Host: www.example.com
User-Agent: Apache/5.0

Accept: application/json

Accept-Language: en-us

Accept-Charset: utf-8

Connection: keep-alive

{

"username": "lucasch"

"Password": "heydontlook"

}

HTTP/1.1 200 OK

Date: Sun, 08 Feb xxxx

Server: Apache/1.3(WIN32)

Last Modified:Sat, 07 Feb xxxx

ETag: "0-23-402421"

Accept-Ranges: bytes

Content-Length: 0

Connection: close

Content-Type: text/html

HTTP/1.1 200 OK

Date: Sun, 08 Feb xxxx

Server: Apache/1.3(WIN32)

Last Modified:Sat, 07 Feb xxxx

ETag: "0-23-402421"

Accept-Ranges: bytes

Content-Length: 0

Connection: close

Content-Type: text/html

http://www.example.com
http://www.example.com

HTTP Methods
There are several other methods that may be useful

• GET -- Used for fetching data. Not usually sent with a body.

• HEAD -- Used to fetch the header for a get request. Useful for figuring out how much
information would be returned or information about the server.

• POST -- Used for sending data to a server or creating a new resource. Sent with a body
that will be used to create the resource.

• PUT -- Used for updating data on a server by replacing what exists. Sent with a body that
is used for the update.

• PATCH -- Used for updating a part of a resource without replacing the whole thing. Sent
with a body containing just the piece to be updated.

• DELETE -- Used for deleting data on a server.

HTTP Response Codes
HTTP response codes provide a lot of information

• 200-299: Success codes

• 300-399: Redirects. A way for servers to tell you where you should make the
next request.

• 400-499: Client Errors. The client did something wrong. Most common are
400 - Client Error, 401- Unauthorized, 404- Not Found.

• 500-599: Server Errors. The client request was ok but the server itself is
broken. Most common are 500- Internal Server Error, 503- Bad gateway, 504 -
Gateway Timeout

What does it mean to be
RESTful?

RESTful Services
Representational state transfer (REST)

• A set of architectures and guiding principles for designing web scale resources.

• RESTful services typically use HTTP for communication.

• Promotes idea of statelessness

• No data about clients are stored per request. Each request is treated as independent.

• This allows for servers to be brought up and down without data loss or disruption.

• As a result, each request needs to provide the full information about what it needs including
authentication.

• Requests can be sent over and over without needing to continue where you left off.

• Applications will still have state such as databases but requests will be treated independently.

RESTful Services
Representational state transfer (REST)

• A set of architectures and guiding principles for designing web scale resources.

• RESTful services typically use HTTP for communication.

• Promotes idea of statelessness

• No data about clients are stored per request. Each request is treated as
independent.

• As a result, each request needs to provide the full information about what it needs
including authentication.

• Applications will still have state such as databases but requests will be treated
independently.

Basic idea: use web technologies (e.g., HTTP, JSON) to make application
interfaces (as opposed to ones directly viewed by clients on web browsers)

WebserverWeb Browser Webserver

POST /login.html HTTP/1.1

Host: www.example.com
User-Agent: Mozilla/5.0

Accept: text/html, */*

Accept-Language: en-us

Accept-Charset: utf-8

Connection: keep-alive

{

form : {

 "username": "lucasch"

 "Password": "heydontlook"

 }

}

The Web Browser sends a request to login
POST /authenticate HTTP/1.1

Host: www.example.com
User-Agent: Apache/5.0

Accept: application/json

Accept-Language: en-us

Accept-Charset: utf-8

Connection: keep-alive

{

"username": "lucasch"

"Password": "heydontlook"

}

RESTful says we need to use HTTP requests between servers. Data sent between
servers should be JSON. Servers shouldn't remember anything about me.

http://www.example.com
http://www.example.com

How do we use RESTful
concepts in python?

Communicating with other servers in Python
Issuing a GET Request

import requests

x = requests.get('https://mysamplepage.com/index.html')

if x.status_code > 300:

print("Error making request")

print(x.text)

print(x.json())

Issue a GET request. Check the response code is under 200. Print JSON response.

https://mysamplepage.com/index.html

Communicating with other servers in Python
Issuing a POST Request
import requests

import json

myRequestBody = {'FirstName':"Lucas","LastName":"Chaufournier"}

headers = {"Content-Type": "application/json"}

r = requests.post('https://example.com/register', data = json.dumps(myRequestBody),
headers=headers)

if r.status_code > 300:

 print("ERROR in response")

else:

 print(r.json())

Issue a POST request with a python dict. Check the response code is under 200.
Print JSON response.

RESTful Activity

• Clone these two repl.its:

• https://replit.com/@thelimeburner/Authentication-Template

• https://replit.com/@thelimeburner/AuthenticationService

• Implement a login restful service. You will have one service that takes requests from
the form and one that verifies the data with the database.

• You will need to implement two post requests that support logging in and verifying a
user as well as registering a user.

• Read the spec in AuthenticationService to know how to format your requests and
parse the responses.

https://replit.com/@thelimeburner/Authentication-Template
https://replit.com/@thelimeburner/AuthenticationService

Login Architecture

Form Data
Reformatted json

data

Web Service Authentication Service

Database

Select,Insert

