
Chaufournier & Wood
CSCI 2541

Lab 2
Introduction to Web Development: Back End Development

Front End vs Back End
Whats the difference?

Front End
The art and design of websites and web applications that render on
the client side. Everything from the look and feel to the way you
interact with a website.

Back End
The server side logic for an application controlling what happens
with the data, how the client side rendering changes in response and
how the data gets stored.

Front End vs Back End

Front End vs Back End

Front End

Front End vs Back End

Front End

Front End handles displaying all the content and interactions
for the user

Front End vs Back End

Front End Back End

Front End vs Back End

Back End

Back End handles all the application logic and interaction with
data stores.

Front End

Front End vs Back End Separation of Duties

Back EndFront End
Designers

UI Developers

UX researchers

Devops

API Developers

DB Admins

How do you Build Back Ends?
Python Flask!

Python Flask

• A Python library that provides an api for creating a backend

• Developers define endpoints that serve content to users such as websites
and static files

• Developers can also take in data from websites and perform actions based on
the input received

How Do I get Flask?

$ pip install Flask

How do I serve a website using Flask?
from flask import Flask
from flask import render_template, request

app = Flask('app')

@app.route('/', methods=['GET', 'POST'])
def hello_world():
 return """
 <html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 Hello World
 </body>
 </html>
 """

app.run(host='0.0.0.0', port=8080)

1. Import the Flask Library

2. Define a Flask App Variable

3. Define a new Route on app with the
accepted methods. This is where you define

the location of the webpage.
4. Return back a string with data for the
browser to interpret. This is where your

HTML goes.

5. Run your server on an address and a
given port

How can I take in user input?
from flask import Flask
from flask import render_template, request

app = Flask('app')

@app.route('/', methods=['GET', 'POST'])
def hello_world():

 if request.method == 'POST':
 print(request.form["field1"])

 return """
 <html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <form action="/" method="POST">
 <input type="text" name="field1">

 <input type="submit" name="submit">
 </form>
 </body>
 </html>
 """

Data is exchanged from client side to the
server side using post requests.

Data elements can be accessed by
accessing variables sent from a form.

Here we access field1 which was defined as
a named input on the html page

This will print out the value of field1 every
time the form is submitted

Returning data to a user
from flask import Flask
from flask import render_template, request

app = Flask('app')

@app.route('/', methods=['GET', 'POST'])
def hello_world():

 if request.method == 'POST':
 return request.form["field1"]

 return """
 <html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <form action="/" method="POST">
 <input type="text" name="field1">

 <input type="submit" name="submit">
 </form>
 </body>
 </html>
 """

To return data to the client, simply modify
the print statement into a return

statement

Anything included in a return is rendered
back to the user as html

Note: In this example we simply return
the variable. In assignments, you are

expected to return back a full html page.

Lab activity 1

• Use the sample code to build an interactive form

• Ask for Player 1 and Player 2’s moves

• Return back to the user what each player picked.

• Must define an endpoint that:

• Presents the input form.

• Receives the data from a post request and
returns the moves chosen to the user

https://repl.it/@thelimeburner/Lab2

https://repl.it/@thelimeburner/Lab2

But wait what if I have a really
large web page with lots of data?

Flask Templates to the Rescue

Flask Templating

• Flask Templates allow you to take static pages and sub in dynamic content.

• Flask Templates are made up of html alongside a new syntax that allows you
to use logic to determine whats rendered.

• Flask Templating happens at the server side before content is sent to the
client side.

• All templates live at the /templates directory in your repo.

What do templates look like?
from flask import Flask
from flask import render_template, request

app = Flask('app')

@app.route('/', methods=['GET', 'POST'])
def hello_world():

 days = ["Monday","Tuesday","Wednesday"]

 return render_template(“index.html”,

date="January 27”,
days=days)

app.run(host='0.0.0.0', port=8080)

<!DOCTYPE html>
<html>
<head>
 {% if title %}
 <title>{{ title }}</title>
 {% else %}
 <title>My Web Page</title>
 {% endif %}
</head>
<body>
 Today's date is {{date}}.

 <!-- {% if days %} -->
 {% for day in days%}
 {{day}}
 {% endfor %}
 <!-- {% endif %} -->

</body>
</html>

/templates/index.html /main.py

What do templates look like?
from flask import Flask
from flask import render_template, request

app = Flask('app')

@app.route('/', methods=['GET', 'POST'])
def hello_world():

 days = ["Monday","Tuesday","Wednesday"]

 return render_template(“index.html”,

date="January 27”,
days=days)

app.run(host='0.0.0.0', port=8080)

<!DOCTYPE html>
<html>
<head>
 {% if title %}
 <title>{{ title }}</title>
 {% else %}
 <title>My Web Page</title>
 {% endif %}
</head>
<body>
 Today's date is {{date}}.

 <!-- {% if days %} -->
 {% for day in days%}
 {{day}}
 {% endfor %}
 <!-- {% endif %} -->

</body>
</html>

/templates/index.html

Flask Routes

• Websites in actuality are made out
of many routes (“endpoints”)

• Web pages send data between
routes to render content and
accomplish business logic.

• You can serve a page from / and
have the data processed in /route2

from flask import Flask
from flask import render_template, request

app = Flask('app')

@app.route('/', methods=['GET', 'POST'])
def route1():

 days = ["Monday","Tuesday","Wednesday"]

 return render_template("index.html")

@app.route('/route2', methods=['GET', 'POST'])
def route2():

 return "This is my Second Route"

app.run(host='0.0.0.0', port=8080)

Lab activity 2

• Let’s continue your abduction web form from lab 1.

• Previously we asked you to design the form, now you must process the data
and return it to the user in a pretty way.

• Using templates you must:

• Present your form to the user.

• Use 2 separate routes.

• Return a page to the user display the input data received.

Homework

• Finish activities one and two

• Extend activity one to print out the winner of RPS

• (Hint: Use the logic from your week 2 homework)

• You should work in your pairs to complete this.

• Due Tuesday Feb 2nd 11:59pm.

• Submit here: http://bit.ly/DB21-3

Async students can work
individually or form their own

teams (max size 2) - use
#async to find a partner

